首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electrically conducting rubbery composites based on thermoplastic polyurethane (TPU) and carbon nanotubes (CNTs) were prepared through melt blending using a torque rheometer equipped with a mixing chamber. The electrical conductivity, morphology, rheological properties and electromagnetic interference shielding effectiveness (EMI SE) of the TPU/CNT composites were evaluated and also compared with those of carbon black (CB)‐filled TPU composites prepared under the same processing conditions. For both polymer systems, the insulator–conductor transition was very sharp and the electrical percolation threshold at room temperature was at CNT and CB contents of about 1.0 and 1.7 wt%, respectively. The EMI SE over the X‐band frequency range (8–12 GHz) for TPU/CNT and TPU/CB composites was investigated as a function of filler content. EMI SE and electrical conductivity increased with increasing amount of conductive filler, due to the formation of conductive pathways in the TPU matrix. TPU/CNT composites displayed higher electrical conductivity and EMI SE than TPU/CB composites with similar conductive filler content. EMI SE values found for TPU/CNT and TPU/CB composites containing 10 and 15 wt% conductive fillers, respectively, were in the range ?22 to ?20 dB, indicating that these composites are promising candidates for shielding applications. © 2013 Society of Chemical Industry  相似文献   

2.
In this study, effect of processing method on microstructure formation and related electrical conductivity and electromagnetic interference shielding effectiveness of carbon nanofiber (CNF) filled thermoplastic polyurethane (TPU) composites, prepared via three different processing techniques; (i) melt compounding (MC) in a twin screw extruder, (ii) simple solution mixing (SM) on a magnetic stirrer, and (iii) solution mixing with sonication (SM-U) were investigated. It was found that the electrical conductivity values of samples decreased in the order of SM > SM-U > MC for a particular amount of CNF. The electromagnetic test results showed that the samples prepared with SM and SM-U methods yielded higher total shielding effectiveness (SET) values than those prepared with MC. SET values of samples including of 20 phr of CNF prepared with MC, SM-U and SM methods were varied in the range of 10–30 dB, 20–60 dB and 20–80 dB, respectively within a frequency range of 1–12 GHz.  相似文献   

3.
Acrylonitrile–styrene–acrylate/natural graphite/carbon nanofiber composites (ASA/NG/CNF) were prepared using a melting blending method. The effects of CNFs on the morphology, rheological properties, dynamical mechanical properties, electrical resistivity, and electromagnetic interference shielding effectiveness (EMI SE) were studied using a scanning electron microscope, a rotational rheometer, and dynamic mechanical analysis (DMA). The addition of CNFs changed the oriented and laminated structure of the ASA/NG composite. The flexural strength of the ASA composite reached a maximum at 6% CNF, and then it began to decrease. The addition of CNFs did not alter the glass‐transition temperature of ASA, but it largely increased the storage modulus of the composite in DMA tests. In the rheological measurements, the complex viscosity and storage modulus of the composite increased as CNF content increased, and the resistance to creep of the composites was significantly increased by the addition of CNFs. The electrical resistivity of the ASA composites decreased from 49.8 Ω cm to 2.3 Ω cm as the CNF content was increased from 0 to 12%. At the same time, the EMI properties of the composites rose from 15 dB to 30 dB in the frequency range 30–1500 MHz. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45455.  相似文献   

4.
The present investigation aims to develop thermally stable electromagnetic interference shielding materials from polysulfone (PSU) nanocomposites filled with multiwall carbon nanotubes (MWCNT) or carbon nanofibers (CNF). The effect of filler type and their structural features such as aspect ratio (length/diameter) and wall integrity on the different properties of nanocomposites has been investigated. Nanocomposite filled with MWCNT/CNF exhibits higher thermal stability compared with the neat PSU matrix. The onset degradation temperature of PSU at 532°C enhances to 537 and 538°C at 3 wt% MWCNT and 3 wt% CNF loading, respectively. CNFs filled nanocomposite shows higher electromagnetic interference shielding effectiveness (EMISE) compared with MWCNT filled one at the same filler loading. Compared with MWCNT, CNF imparts lower electrical percolation threshold. Nanocomposite filled with MWCNTs possesses percolation threshold at 1.5 wt%, whereas nanocomposite filled with CNFs possesses the same at 0.9 wt%. The EMISE of 20–45 dB are obtained from only 1 mm thick CNF filled nanocomposites from the filler loading 3 to 10 wt%. This value of EMISE above 40 dB suggests that the prepared nanocomposite can be used as an effective lightweight EMI shielding material for high frequency (8.2–12.4 GHz) applications, where high thermal stability is required. POLYM. COMPOS. 36:566–575, 2015. © 2014 Society of Plastics Engineers  相似文献   

5.
This work evaluates the influence of two types of carbonaceous fillers, carbon black (CB) and carbon nanotubes (CNTs), on the electrical, electromagnetic, and rheological properties of composites based on poly(acrylonitrile‐co‐butadiene‐co‐styrene) (ABS) prepared by the melt mixing. Electrical conductivity, electromagnetic shielding efficiency (EMI SE) in the X‐band frequency range (8–12.4 GHz), and melt flow index (MFI) results showed that ABS/CNT composites exhibit higher electrical conductivity and EMI SE, but lower MFI when compared to ABS/CB composites. The electrical conductivity of the binary composites showed an increase of around 16 orders of magnitude, when compared to neat ABS, for both fillers. Binary composites with 5 and 15 wt % of filler showed an EMI SE of, respectively, ?44 and ?83 dB for ABS/CNT, and ?9 and ?34 dB for ABS/CB. MFI for binary composites with 5 wt % were 15.45 and 0.55 g/10 min for CB and CNT, respectively. Hybrid composites ABS/CNT.CB with 3 wt % total filler and fraction 50:50 and 75:25 showed good correlation between EMI SE and MFI. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46546.  相似文献   

6.
This article describes the synthesis and characterization of highly conductive polypyrrole (PPy)/multiwalled carbon nanotube (MWCNT) composites prepared by in situ polymerization of pyrrole using 5‐sulfoisophthalic acid monolithium salt [lithio sulfoisophthalic acid (LiSiPA)] as dopant and ferric chloride as oxidant. Several samples were prepared by varying the amounts of MWCNTs ranging from 1 to 5 wt %. Scanning electron microscope and transmission electron microscope images clearly show a thick coating of PPy on surface of MWCNTs. The electrical conductivity of PPy increased with increasing amount of MWCNTs and maximum conductivity observed was 52 S/cm at a loading of 5 wt % of MWCNTs. Pure PPy prepared under similar conditions had a conductivity of 25 S/cm. Electromagnetic interference (EMI) shielding effectiveness (SE) also showed a similar trend and average EMI shielding of ?108 dB (3 mm) was observed for sample having 5 wt % MWCNT in the frequency range of 8.2–12.4 GHz (X‐band). The light weight and absorption dominated total SE of ?93 to ?108 dB of these composites indicate the usefulness of these materials for microwave shielding. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 45370.  相似文献   

7.
To develop a rubber composite with excellent electrical properties, a sort of synthetic rubber, acrylonitrile butadiene rubber (NBR) with CN dipoles as matrix, multi‐walled carbon nanotubes (MWCNTs) as filler, was synthesized. NBR composites reinforced with 0.5, 1.5, 3, 10, and 20 phr MWCNT contents were fabricated by latex technology. The electrical conductivity, dielectric characteristics, and electromagnetic interference (EMI) shielding effectiveness at room temperature of NBR/MWCNT composites were investigated. MWCNTs were found well dispersed into NBR matrix even for 20 phr content by FESEM observation. The electrical conductivity increased with an increment of MWCNT content. The dielectric constant was over 104 at 103 Hz frequency for 10 and 20 phr MWCNTs‐reinforced NBR composites. It was attributed to the increased electrons and interface polarization. The improved conductivity and dielectric permittivity resulted in an enhanced EMI shielding effectiveness. The EMI shielding effectiveness reached 26 dB at 16.7 GHz frequency for NBR/20 phr MWCNT composite with 1.0 mm thickness. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

8.
The electrical conductivity and electromagnetic interference (EMI) shielding effectiveness of the composites of polypropylene/poly(lactic acid) (PP/PLA) (70/30, wt %) with single filler of multiwall carbon nanotube (CNT) or hybrid fillers of nickel‐coated carbon fiber (CF) and CNT were investigated. For the single filler composite, higher electrical conductivity was observed when the PP‐g‐maleic anhydride was added as a compatibilizer between the PP and PLA. For the composite of the PP/PLA (70/30)/CF (20 phr)/CNT (5 phr), the composite prepared by injection molding observed a higher EMI shielding effectiveness of 50.5 dB than the composite prepared by screw extrusion (32.3 dB), demonstrating an EMI shielding effectiveness increase of 49.8%. The higher values in EMI shielding effectiveness and electrical conductivity of the PP/PLA/CF (20 phr)/CNT (5 phr) composite seemed mainly because of the increased CF length when the composites were prepared using injection molding machine, compared with the composites prepared by screw extrusion. This result suggests that the fiber length of the conductive filler is an important factor in obtaining higher values of electrical conductivity and EMI shielding effectiveness of the PP/PLA/CF/CNT composites. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45222.  相似文献   

9.
A surface treatment was applied to carbon black to improve the electrical and microwave properties of poly(ethylene terephthalate) (PET)-based composites. Three different formamide solutions with 1, 2, and 3 wt % concentrations were prepared to modify the surface chemistry of carbon black. Microwave properties such as the absorption loss, return loss, insertion loss, and dielectric constant were measured in the frequency range of 8–12 GHz (X-band range). Composites containing formamide-treated carbon black exhibited enhancements in the electrical conductivity, electromagnetic interference (EMI) shielding effectiveness, and dielectric constant values when compared to composites with untreated carbon black. In addition, increases in the formamide solution concentration and carbon black content of composites resulted in an increase in the electrical conductivity, EMI shielding effectiveness, and dielectric constant values. The percolation threshold concentration of PET composites shifted from a 3 to 1.5 wt % carbon black composition with the surface treatment. The best EMI shielding effectiveness was around 27 dB, which was obtained with the composite containing 8 wt % carbon black treated with a 3 wt % formamide solution. Moreover, this composition gave the lowest electrical resistivity and the highest dielectric constant among the produced composites. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

10.
Ji Sun Im 《Carbon》2009,47(11):2640-3468
Electrospinning and heat treatment were carried out to get nano sized carbon fibers (CFs) as a matrix for shielding the electromagnetic interference (EMI). In order to improve the electrical conductivity and EMI shielding efficiency of electrospun CFs, carbon black (CB) was fluorinated and embedded into the electrospun CFs. Electrospun fiber sheets embedded fluorinated CB were heat-treated at different temperatures to determine the effects on electrical properties. It is demonstrated that fluorination treatment of CB and heat treatment of electrospun sheets at higher temperature lead to higher electrical conductivities and EMI shielding efficiencies, because fluorination significantly improved its dispersion in electrospun CF webs and created good adhesion between the CB and the CFs. The electrical conductivity of carbon composite sheets (webs) reached ∼38 S/cm, and a high EMI shielding efficiency was obtained (∼50 dB).  相似文献   

11.
Electromagnetic interference (EMI) shielding on plastic mostly consists of conductive fibers in a polymer matrix. This study describes a route for the fabrication of carbon nanofiber filled poly(vinyl alcohol) (PVA) coating materials. Electrical conductivity of the coating materials ranged from 0.033 to 0.169 S/cm depending on the carbon nanofiber fillers produced from different catalyst compositions and gas types. At the frequency of 850 MHz, the shielding effectiveness of coating materials filled with carbon nanofibers was 0.5–1.6 dB, and the values were improved into 1.6–4.8 dB as the carbon nanofibers were treated at 1 100°C for 1 h.  相似文献   

12.
The effect of nitric acid mild functionalized multiwalled carbon nanotubes (MWCNTs) on electromagnetic interference (EMI) shielding effectiveness (SE) of epoxy composites was examined. MWCNTs were oxidized by concentrated nitric acid under reflux conditions, with different reaction times. The dispersion of MWCNTs after functionalization was improved due to the presence of oxygen functional groups on the nanotubes surface. Functionalization at 2 h exhibits the highest EMI SE and electrical conductivity of MWCNTs filled epoxy composites. However, EMI shielding performance of MWCNTs filled epoxy composite declined when the functionalization reaction time was prolonged. This was due to extensive damage on the MWCNT structure, as verified by a Raman spectroscope. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42557.  相似文献   

13.
This work demonstrates the fabrications and characterizations of polyaniline (PAni) composites containing single-walled carbon nanotubes (SWCNTs), graphite nanosheets (GNS), or hybrid fillers (SWCNTs/GNS). The characterization of microstructure, examination of fracture surface morphologies, and measurement of electric conductivity and electromagnetic interference shielding efficiency (EMI SE) were performed. It was found that both the electric conductivity and the EMI SE increase with filler loading, and the nanocomposites filled with 1.0 wt.% SWCNTs/GNS possessed the highest electric conductivity of 16.2 S/cm and total EMI SE of 27.0 dB. The experimental results also show that absorption is the primary mechanism of EMI SE for all of the loadings and fillers.  相似文献   

14.
Electrically conductive composite nanofibers of polyvinylpyrrolidone (PVP) filled with multi-walled carbon nanotubes (MWCNTs) were prepared by electrospinning process. The complex permittivity and electromagnetic interference shielding effectiveness (EMI SE) of all composite nanofibers were measured in the X band frequency range 8.2–12.4 GHz. The electrical conductivity, real and imaginary part of permittivity, and EMI shielding behaviors of the composite nanofibers were reported as function of MWCNTs concentration. Electrical conductivity of MWCNTs/PVP composite nanofiber followed power law model of percolation theory having a percolation threshold ?c = 0.72 vol% (~1 wt.%) and exponent t = 1.71. The total EMI SE of MWCNTs/PVP composite nanofibers increased up to 42 dB mainly base on the absorption mechanism. The EMI SE measured from experiments was also compared with the approximate value calculated from theoretical model. The obtained theory results confirmed that the selected model presented acceptable performance for evaluating the involved parameters and prediction of the EMI SE of composite nanofibers. The ability of the theoretical model to predict the EMI shielding by reflection and absorption was found to be a function of the frequency, thickness, permittivity, and conductivity.  相似文献   

15.
The electrical conductivity and percolation threshold of single and hybrid carbon filled composites are experimentally investigated. Polystyrene, carbon fiber (CF) and carbon black (CB) at three CF/CB ratios of 1.67, 3.33, 6.67 were compounded in a twin screw extruder micro‐compounder and compression molded into sheets. The through‐plane and in‐plane electrical conductivity of the composites are measured by 2 and 4 probe techniques. The percolation threshold of the single filler and hybrid composites are determined from the experimental results using a percolation model. The hybrid composites have a higher value of electrical conductivity and lower percolation threshold than the single CF filler composite except for the CF/CB ratio of 6.67. The percolation threshold for the cases of single filler and hybrid composites are modeled. The hard core / soft shell model is used and it is assumed that the percolation in a particle filled system depends on the ratio of tunneling distance to particle diameter. This ratio is determined by modeling single filler composites using the experimental data and kept constant in the modeling of the hybrid system. Finite size scaling is used to determine the percolation threshold for the infinite size hybrid system containing (nanosize) particles and micron size fibers for three CF/CB ratios. The simulation results show that the percolations of hybrid composites have the same trends observed in the experimental results. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41744.  相似文献   

16.
The microstructure, electromagnetic interference (EMI) shielding effectiveness (SE), DC electrical conductivity, AC electrical conductivity and complex permittivity of nanostructured polymeric materials filled with three different carbon nanofillers of different structures and intrinsic electrical properties were investigated. The nanofillers were multiwall carbon nanotubes (MWCNT), carbon nanofibers (CNF) and high structure carbon black (HS-CB) nanoparticles and the polymer was acrylonitrile-butadiene-styrene (ABS). In addition, the EMI SE mechanisms and the relation between the AC electrical conductivity in the X-band frequency range and the DC electrical conductivity were studied. The nanocomposites were fabricated by solution mixing and characterized by uniform dispersion of the nanofillers within the polymer matrix. It was found that, at the same nanofiller loading, the EMI SE, permittivity and electrical conductivity of the nanocomposites decreased in the following order: MWCNT > CNF > CB. MWCNT based nanocomposites exhibited the lowest electrical percolation threshold and the highest EMI SE owning to the higher aspect ratio and electrical conductivity of MWCNT compared to CNF and HS-CB. The AC conductivity in the X-band frequency range was found to be independent of frequency.  相似文献   

17.
In this study, a polar conductive filler [carbon black (CB)], a nonpolar polymer [polypropylene (PP)], and a polar polymer [nylon 6 (PA6)] were chosen to fabricate electrically conductive polymer composites by melt blending and compression molding. The morphological developments of these composites were studied. Scanning electron microscopy results showed that in a CB‐filled PP/PA6 (CPA) composite, CB particles were selectively dispersed in PA6 phases and could make the dispersed particles exist as microfiber particles, which could greatly improve the electrical conductivity. The PA6 and CB contents both could affect the morphologies of these composites. The results of electrical resistivity measurements of these composites proved the formation of conductive networks. The resistivity–temperature behaviors of these composites were also studied. For CB‐filled PP (CP) composites, there were apparent positive temperature coefficient (PTC) and negative temperature coefficient (NTC) effects and an unrepeatable resistivity–temperature characteristic. However, for CPA composites, there were no PTC or NTC effects from room temperature to 180°C, and the resistivity–temperature behavior showed a repeatable characteristic; this proved that CB particles were selectively dispersed in the PA6 phase from another point of view. All experimental results indicated that the addition of PA6 to a CP composite could lead to an expected morphological structure and improve the electrical conductivity of the CP composite. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

18.
Controlling the spatial configuration of conductive fillers in thin composites by a facile strategy is critical to widely commercial use these materials for electromagnetic interference (EMI) shielding applications. In this work, a series of free‐standing thin Ni/polyvinyl chloride (PVC) films with the same composition just systematically varied Ni particles dispersion states was prepared by solution casting method. The relationships between the structure and properties were also investigated. Ni particles motion was governed by evaporation and sedimentation during solvent evaporation with the presence of soluble PVC influencing the casting solution viscosity. The experimental results fit the 1D model. In dilute casting system, the effective concentration of Ni particles in the lower part of the film was significantly enhanced and a dense, closed packed conductive network was formed. This special distribution of Ni particles was found to play a key role in the corresponding properties. Compared to the uniform film, the film which was fabricated from the casting solution containing 0.03 g/mL PVC, exhibited much better electrical conductivity and EMI shielding performance. Furthermore, the detailed study shows that the obtained thin film exhibited excellent EMI SE values per unit film thickness of 200 dB/mm. Meanwhile, the resultant films possessed thermal conductivity of 0.32~0.59 W/(m·K) depended on whether a Ni continuous network formation throughout the whole film in the temperature range of 30~60°C. Our study results pave thus the way for scalable fabrication of substrate‐free systems that have advantages in multifunctional complex devices. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42560.  相似文献   

19.
Conductive polymeric based composites were derived from ethylene vinyl acetate rubber filled with Vulcan XC‐72, short carbon fiber (SCF), and their blends. The electromagnetic interference (EMI) shielding effectiveness (SE), return loss, and reflection coefficient were studied. The measurements of the SE of the composites were carried out in two different frequency ranges of 100–2000 MHz and 8–12 GHz (X band). It was observed that the SE of the composites was frequency dependent and it increased with increasing frequency. The increasing of filler loading also enhanced the SE of the composites. The 100% SCF filled composites showed a higher SE compared to that of the filler blend or purely carbon black filled composites. The correlation between the SE and bulk conductivity of various composites was also discussed. The compromise between EMI SE, electrical conductivity, and mechanical properties was obtained when the composites contained both types of filler like particulate carbon black and SCF. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 1601–1608, 2001  相似文献   

20.
以马来酸酐(MA)为功能性单体,通过自由基反应制备了马来酸酐功能化的多壁碳纳米管(MA-MWCNT);以MA-MWCNT、环氧树脂、蓖麻油酸改性的四乙烯五胺固化剂、釉粉、水为原料,通过悬浮乳液聚合法制备了功能化碳纳米管/环氧树脂多孔复合材料。采用拉曼光谱、X射线衍射、红外光谱、X射线光电子能谱对功能化的碳纳米管进行了表征和测试。采用扫描电镜(SEM)、表面电阻测量仪、矢量网络分析仪对复合材料的表面形貌、电导率和电磁屏蔽性能进行了测试。结果表明:马来酸酐功能化单体的引入能够很好地改善碳纳米管的分散性能及材料的电磁屏蔽性能;随着碳纳米管含量的增多,复合材料的电导率增大,电磁屏蔽效能峰值增大,材料的电磁屏蔽性能增强;加入功能化的碳纳米管比加入未功能化碳纳米管的电磁屏蔽性能高,多孔复合材料比无孔复合材料的电磁屏蔽性能高。当加入功能化的碳纳米管的量为3%时,制备得到的多孔材料电磁屏蔽性能最佳,其电磁屏蔽性能峰值达到31.1dB。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号