首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Self‐crosslinkable lignin/epoxidized natural rubber composites (SLEs) were prepared through a high‐temperature dynamic heat treatment procedure followed by a postcuring process. Because of the ring‐opening reaction between lignin and epoxidized natural rubber (ENR), lignin as a crosslinker and reinforcing filler was uniformly dispersed into the ENR matrix and was highly compatible with the polymer matrix; this was confirmed by scanning electron microscopy. The curing behavior, mechanical properties, and dynamic mechanical properties of the SLEs were studied. The results show that the crosslinking degree, glass‐transition temperature, modulus, and tensile properties of the SLEs substantially increased with the addition of lignin. A physical model was used to verify the strong interactions between lignin and ENR. Stress–strain curves and X‐ray diffraction suggested that the reinforcement effect on the SLEs mainly originated from lignin itself rather than from strain‐induced crystallization. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41166.  相似文献   

2.
The aggregation structure of lignin in aqueous solution had an important effect on the dispersion of lignin and the properties of lignin/styrene–butadiene rubber (SBR) composites. This article revealed the relationship between aggregation structure and chemical structure of modified lignin. Unmodified lignin was amorphous; however, our results showed that aldehyde‐modified lignin was transformed into spherical aggregates, while propylene‐oxide‐modified lignin self‐aggregated into supramolecular domains. The relationships between aggregation structure, filler dispersion, filler–rubber interaction, and performance were also studied by investigating the microstructure, viscoelastic behavior, and mechanical properties of lignin/SBR composites. Meanwhile, a solution to improve the coprecipitation efficiency of lignin and SBR latex was proposed. In this article, epoxidized natural rubber (ENR) was also used as compatibilizer to improve the interfacial adhesion between polar lignin and nonpolar SBR. The results showed better lignin dispersion for the ENR‐containing rubber composites, as well as superior wet skid resistance and lower rolling resistance. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45759.  相似文献   

3.
Montmorillonite (Mt) was intercalated with cetyltrimethylammonium bromide and functionalized with three types of aminosilane (3‐aminopropyltrimethoxysilane, n‐(2‐aminoethyl)‐3‐aminopropyltrimethoxysilane and 3‐[2‐(2‐aminoethylamino)ethylamino]propyltrimethoxysilane). The modified Mt was compounded with natural rubber (NR)/epoxidized natural rubber (ENR) via one‐step latex compounding. The effect of the modified Mt content on the oil resistance and mechanical properties of the NR/ENR/modified Mt composites was investigated. The X‐ray diffraction patterns of the composites showed partial intercalation/exfoliation of the modified Mt in the rubber matrix. Cryogenic fracture and X‐ray fluorescence results revealed highly dispersed modified Mt in the composites in the presence of 10 phr ENR. All three aminosilane groups slightly improved the oil resistance, with the long‐alkyl‐length group producing the greatest improvement. The addition of a small amount of modified Mt improved both oil resistance and tensile strength by increasing in the average diffusion path length in the NR matrix and enhancing the interaction between the modified Mt and the epoxide groups in ENR. The addition of 1.0 phr of modified Mt increased the tensile strength by 18% and decreased the elongation at break by 12% compared with a neat NR/ENR blend. © 2017 Society of Chemical Industry  相似文献   

4.
Improvement of the properties of rubber nanocomposites is a challenge for the rubber industry because of the need for higher performance materials. Addition of a nanometer‐sized filler such as silicon carbide (SiC) to enhance the mechanical properties of rubber nanocomposites has rarely been attempted. The main problem associated with using SiC nanoparticles as a reinforcing natural rubber (NR) filler compound is poor dispersion of SiC in the NR matrix because of their incompatibility. To solve this problem, rubber nanocomposites were prepared with SiC that had undergone surface modification with azobisisobutyronitrile (AIBN) and used as a filler in blends of epoxidized natural rubber (ENR) and natural rubber. The effect of surface modification and ENR content on the curing characteristics, dynamic mechanical properties, morphology and heat buildup of the blends were investigated. The results showed that modification of SiC with AIBN resulted in successful bonding to the surface of SiC. It was found that modified SiC nanoparticles were well dispersed in the ENR/NR matrix, leading to good filler‐rubber interaction and improved compatibility between the rubber and filler in comparison with unmodified SiC. The mechanical properties and heat buildup when modified SiC was used as filled in ENR/NR blends were improved. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45289.  相似文献   

5.
《Polymer Composites》2017,38(6):1151-1157
Epoxidized natural rubbers (ENRs) with three different epoxide contents (i.e., 20, 35, and 50 mol% indicated as ENR20, ENR35, and ENR50, respectively) were prepared. They were then reinforced with 3‐methyacryloxypropyl trimethoxysilane‐modified nanosilica (MPTS‐SiO2). Influence of epoxide level in ENR molecules on morphological, mechanical, and dynamic mechanical properties of the ENR nanocomposites was investigated. The scanning electron microscopy results revealed larger agglomerates of SiO2 were found in the ENR composites with higher epoxide content. Furthermore, the strength and moduli of the ENR nanocomposites increased with increasing epoxide content. However, the optimal tensile strength and elongation at break were observed in the nanocomposites with the intermediate level of epoxide contents. The correlation between the strength properties and the interfacial silica‐matrix adhesion indicated that the maximum interfacial adhesion of the nanocomposites was observed in the nanocomposite with ENR35. Also, DMA results indicated stronger interaction between ENR35 and MPTS‐SiO2 due to higher storage modulus. POLYM. COMPOS., 38:1151–1157, 2017. © 2015 Society of Plastics Engineers  相似文献   

6.
Reactive high vinyl silicone oil (HVSO) was selected to prepare the ceramic silicone rubber composites. The effects of HVSO on the mechanical properties and thermal stabilities of ceramic silicone rubber composites were investigated. The structures of the cross‐linked network of silicone rubber with or without HVSO were studied. The intermolecular space of silicone rubber was enlarged, and the cross‐linked point was concentrated by addition of HVSO, which was demonstrated by cross‐linking densities, scanning electron microscope (SEM) images, and dynamic mechanical analysis (DMA). The cross‐linked network model was formed with the slipping of the cross‐linked points along with the silicone rubber chain. Mechanical properties of composites were enhanced by the formation of this cross‐linked network. The tear strength, tensile strength, and elongation at break of the composites were increased by 18.5%, 13.2%, and 37.4% by the adding of 2 phr HVSO, respectively. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41864.  相似文献   

7.
《Polymer Composites》2017,38(6):1031-1042
The influence of multi‐walled carbon nanotubes (MWCNTs) and conductive carbon black (CCB) on cure, electrical, dielectric, and mechanical properties of epoxidized natural rubber (ENR) composites was investigated. It was found that short MWCNTs (S‐MWCNTs) with low loading significantly affected the cure characteristics in a way similar to high loading of CCB. Moreover, the ENR/S‐MWCNTs composites exhibited high AC conductivity, dielectric constant, and dielectric loss tangent (tan δ ) compared to the ENR/CCB and ENR/L‐MWCNTs (long MWCNTs) composites. In addition, the S‐MWCNTs composites showed the lowest percolation threshold concentration, defined as the lowest loading to form conductive paths in the insulating ENR matrix. This might be attributed to the comparatively high interfacial polarization, with good dispersion and distribution, of the S‐MWCNTs in ENR matrix. These characteristics were confirmed by TEM imaging and by a high bound rubber content, corroborating strong filler–rubber interactions in the ENR/S‐MWCNTs composites. However, the L‐MWCNTs composites showed the lowest electrical and other related properties, despite the highest aspect ratio and specific surface area of this filler. This might be because of the flocculation of nanotubes by mutual entanglement, leading to a poor uneven distribution in the ENR matrix. POLYM. COMPOS., 38:1031–1042, 2017. © 2015 Society of Plastics Engineers  相似文献   

8.
This is probably the first report on developing nitrile butadiene rubber (NBR) composites with enhanced performance s via lignin bridged epoxy resin in the rubber matrix. NBR/lignin masterbatch has been prepared through latex‐compounding method, and then epoxy resin (F51) was added in the NBR/lignin compounds by the melt compounding method. Lignin‐epoxy resin networks were synthesized in situ during the curing process of rubber compounds through epoxide?hydroxyl reactions. Compared with lignin filler, lignin‐F51 networks showed an improved oil resistance ability and led to increased mechanical properties, crosslinking density, and thermal stability of the rubber composites. This method provides a new insight into the fabrication of novel interpenetrating polymer networks in rubber composites and enlarges the potential applications of lignin in high performance rubber composites. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42922.  相似文献   

9.
Composites of carbon nanotubes (CNT) and epoxidized natural rubber (ENR) were prepared by in‐situ functionalization of CNT with two alternative silane coupling agents: bis(triethoxysilylpropyl) tetrasulfide (TESPT) and 3‐aminopropyltriethoxysilane (APTES). The reactions of ENR molecules with the functional groups on CNT surfaces and with the silane molecules were characterized by Fourier transform infrared. Furthermore, cross‐link density, relaxation behaviors, curing, mechanical, electrical, and morphological properties of pristine ENR and the ENR composites were investigated. Very low percolation thresholds, at CNT concentrations as low as 1 phr, were observed in the ENR–CNT and the ENR–CNT–TESPT composites. This might be attributed to improvements in the chemical linkages between ENR molecules and functional groups on CNT surfaces that led to a homogenous dispersion of CNTs in the ENR matrix, with loose CNT agglomerates. POLYM. ENG. SCI., 55:2500–2510, 2015. © 2015 Society of Plastics Engineers  相似文献   

10.
Epoxidized natural rubbers (ENRs) were prepared. ENRs with different concentrations of up to 20 wt % were used as modifiers for epoxy resin. The epoxy monomer was cured with nadic methyl anhydride as a hardener in the presence of N,N‐dimethyl benzyl amine as an accelerator. The addition of ENR to an anhydride hardener/epoxy monomer mixture gave rise to the formation of a phase‐separated structure consisting of rubber domains dispersed in the epoxy‐rich phase. The particle size increased with increasing ENR content. The phase separation was investigated by scanning electron microscopy and dynamic mechanical analysis. The viscoelastic behavior of the liquid‐rubber‐modified epoxy resin was also evaluated with dynamic mechanical analysis. The storage moduli, loss moduli, and tan δ values were determined for the blends of the epoxy resin with ENR. The effect of the addition of rubber on the glass‐transition temperature of the epoxy matrix was followed. The thermal stability of the ENR‐modified epoxy resin was studied with thermogravimetric analysis. Parameters such as the onset of degradation, maximum degradation temperature, and final degradation were not affected by the addition of ENR. The mechanical properties of the liquid‐natural‐rubber‐modified epoxy resin were measured in terms of the fracture toughness and impact strength. The maximum impact strength and fracture toughness were observed with 10 wt % ENR modified epoxy blends. Various toughening mechanisms responsible for the enhancement in toughness of the diglycidyl ether of the bisphenol A/ENR blends were investigated. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39906.  相似文献   

11.
In this article, we provide an extensive analyses of various properties that are required for tire tread based on developed highly dispersible (HD) silica‐filled epoxidized natural rubber composites. Silica in an HD form has become a staple filler in tire tread applications because of its inherent advantages. In this study, epoxidized natural rubber with 25 mol % epoxide (ENR 25) and natural rubber were mixed with two different types of HD silica for superior reinforcement. A standard tire tread formulation was used as the base compound. The magic triangle properties were conspicuously influenced by the viscoelastic characteristics of the vulcanizates. The introduction of polar rubber (ENR 25) into the HD silica greatly improved rheological, physicomechanical, bound rubber content, and dynamic mechanical properties, and this led to a better, fuel‐efficient tire. We successfully achieved this, even in the absence of a silane coupling agent. ENR 25 played an imperative role in showing an extraordinary rubber–filler interactions and was primarily responsible for these observations. In this study, we explored the HD silica dispersion with transmission electron microscopy observations. Morphological studies revealed well‐dispersed HD silica with the formation of a rubber–filler network. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43531.  相似文献   

12.
A new type of elastomeric composite containing natural rubber (NR) and graphitic carbon nitride (g-C3N4) has been successfully prepared with the reinforced property. The reinforcing effect of g-C3N4 in NR composites was examined by cure, mechanical, morphological, and swelling studies. Besides, epoxidized NR with 50-mol % epoxy level (ENR-50) was used as a compatibilizer to enhance the hydrophilic g-C3N4 filler capacity for hydrophobic NR composites. At the same filler load level, the mechanical properties of NR/g-C3N4 composites, such as tensile strength and tensile modulus, were consistently increased with increased ENR-50 content. To note, the ENR compatibilized composites have shown better-reinforced performance, which has been attributed to the hydrogen bonding interactions between the uncondensed amine groups in g-C3N4 and the polar groups in ENR. We believe that these newly prepared NR composites based on g-C3N4 as nonblack filler and ENR-50 as compatibilizer can find potential applications in modern day rubber research. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 48136.  相似文献   

13.
In this work, natural rubber/aramid fiber (NR/AF) composites were prepared with master batch method. AF was modified by using epoxy resin (EP) and accelerator 2‐ethyl‐4‐methylimidazole (2E4MZ) through surface coating on the basis of the complexing treatment with CaCl2 solution. Hydroxyl‐terminated liquid isoprene rubber (LIR) was regarded as a compatibilizer between EP and NR. It is found that the crystallinity on AF surface is decreased by complexing reaction with CaCl2 solution. Swelling and mechanical properties of the vulcanized composites, such as swelling degree, tensile and tear strength, tensile modulus at 300% elongation, are measured, and the tensile fracture morphology and dynamic mechanical analysis of the composites are investigated. The results show that the mechanical properties of composites with modified fibers are improved obviously and interfacial adhesion between matrix and the fiber is enhanced, especially for the AF coated with EP and imidazole. The best comprehensive mechanical properties of the composites are obtained with using CaCl2‐EP/2E4MZ system when the ratio of m(EP)/m(AF) is 3%. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42122.  相似文献   

14.
Natural rubber (NR), epoxidized natural rubber (ENR), and chlorosulfonated polyethylene (CSM) composites filled with conductive carbon black and aluminum powder have been prepared by using a two‐roll mill. An electromagnetic interference shielding effectiveness of those rubber composites was carried out in the frequency range of 8–12GHz (X‐band microwave). The increase of filler loading enhanced shielding effectiveness of the rubber composites. Conductive carbon black was more effective in shielding than aluminum powder. Binary filler‐filled rubber composites showed higher shielding effectiveness than that of single filler‐filled rubber composites. It has been observed that the shielding effectiveness of these rubber composites could be ranked in the following order: ENR ≥ CSM > NR, whereas the mechanical properties of the rubber composites were in the order of CSM > ENR > NR. The correlation between shielding effectiveness and electrical conductivity as well as mechanical properties of the rubber composites are also discussed. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

15.
A novel rubber filler, black liquor–montmorillonite complex (BL–MMT) was prepared by dehydration of a mixture of MMT and BL and used in the preparation of acrylonitrile butadiene rubber (NBR) composites by mechanical mixing method. The BL–MMT/rubber composites were characterized using X‐ray diffraction (XRD), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), and differential scanning calorimeter (DSC). Experimental results of XRD and TEM indicated that MMT was well‐dispersed in the rubber because of the presence of lignin. DSC, thermo‐oxidative aging measurements and TGA results demonstrated that the thermal properties of NBR were improved due to the addition of BL–MMT. The tensile properties including tensile strength, elongation at break, and modulus were also tested. All experimental results indicated that this BL–MMT complex could be an effective reinforcing agent in rubber for cost‐saving and environment benefits. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

16.
Epoxidized natural rubber (ENR)/fumed silica vulcanizates were prepared by mechanical mixing method. Fumed silica content can affect mechanical properties of the composites, and ten parts per hundreds of rubber (phr) fumed silica lead to the best tensile strength. The interaction between ENR and fumed silica was characterized by Kraus equation, crosslink density (tested by NMR), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA) and scanning electron microscope (SEM). The results showed that the dispersion of silica in ENR was better than in natural rubber (NR), hydrogen bond was produced between ENR and fumed-silica in ENR/silica blends, and glass transition temperature of ENR/silica vulcanizate was higher than pure ENR vulcanizate. TGA and DMA confirmed that there was intense interaction between ENR and silica.  相似文献   

17.
Lignin‐layered double hydroxide (lignin‐LDH) complex was synthesized by in situ method, and then styrene‐butadiene rubber (SBR)/lignin‐LDH composites were prepared by the melt compounding method. X‐ray diffraction analysis showed that crystal lignin‐LDH was successfully obtained and transmission electron microscopy analysis showed well dispersion of lignin‐LDH in SBR matrix. The tensile strength, elongation at break, 300% modulus and hardness of lignin‐LDH/SBR were significantly improved compared to LDH/SBR composites. Thermogravimetric analysis indicated that the thermal degradation temperature of the lignin‐LDH/SBR at 10% weight loss (T10) decreased whereas 50% weight loss (T50) was much higher than that of pristine LDH/SBR due to barrier property of the well dispersed Lignin‐LDH in SBR matrix. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 1308‐1312, 2013  相似文献   

18.
Epoxidized natural rubber (ENR)–silica hybrids without any other additives were prepared by an open‐mill mixing method at room temperature. The curing characteristics, crosslinking density, mechanical properties, and dynamical mechanical properties were investigated. The results indicate that the ENR–silica hybrid materials could be cured with silica as a crosslinking and reinforcing agent. Attenuated total reflection–Fourier transform infrared spectroscopy and solid‐state 13C‐NMR spectroscopy exposed the characteristics of the interfacial interaction in the hybrids and confirmed the existence of chemical bonds and hydrogen bonds between the epoxy group and Si? OH. Scanning electron microscopy illustrated a good dispersion of silica in the ENR matrix. Meanwhile, the modulus at 100% elongation of the hybrid reached 9.64 MPa when 100‐phr silica was loaded; a similar trend was observed for the hardness. Finally, our findings might extend the concept of rubber curing and open a new space for making an environmentally friendly rubber composite. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 44605.  相似文献   

19.
The effects of epoxidized natural rubber (ENR) and maleic anhydride‐grafted polybutadiene (PB‐g‐MA) as compatibilizers to rubber formulations with and without organo‐modified layered silicates are investigated. The physical properties and curing characteristics of composites are studied by moving die rheometer, rubber process analyzer, tensile, tear, and hardness testing. The state of organoclay intercalation was determined by X‐ray diffraction method. The addition of compatibilizers, especially ENR 50, results in further intercalation or exfoliation of the organoclay that increased the clay dispersion in the rubber matrix. ENR 50 with organo‐modified clay improves the physical properties and changes the curing profile. The addition of PB‐g‐MA without organoclay increases the tensile strength (σmax) by increasing the stock viscosity of the rubber compound. Interestingly, simultaneous increase in hardness and σmax is achieved in the presence of both compatibilizers, a characteristic that is difficult to achieve and sometimes required in rubber processing. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

20.
Epoxidized natural rubber (ENR) was prepared using the performic epoxidation method. TPVs based on ENR/PP blends were later prepared by melt‐mixing processes via dynamic vulcanization. The effects of blend ratios of ENR/PP, types of compatibilizers, and reactive blending were investigated. Phenolic modified polypropylene (Ph‐PP) and graft copolymer of maleic anhydride on polypropylene molecules (PP‐g‐MA) were prepared and used as blend compatibilizers and reactive blending components of ENR/Ph‐PP and ENR/PP‐g‐MA blends. It was found that the mixing torque, apparent shear stress and apparent shear viscosity increased with increasing levels of ENR. This is attributed to the higher viscosity of the pure ENR than that of the pure PP. Furthermore, there was a higher compatibilizing effect because of the chemical interaction between the polar groups in ENR and PP‐g‐MA or Ph‐PP. Mixing torque, shear flow properties (i.e., shear stress and shear viscosity) and mechanical properties (i.e., tensile strength, elongation at break, and hardness) of the TPVs prepared by reactive blending of ENR/Ph‐PP and ENR/PP‐g‐MA were lower than that of the samples without a compatibilizer. However, the TPVs prepared using Ph‐PP and PP‐g‐MA as compatibilizers exhibited higher values. We observed that the TPVs prepared from ENR/PP with Ph‐PP as a compatibilizer gave the highest rheological and mechanical properties, while the reactive blending of ENR/PP exhibited the lowest values. Trend of the properties corresponds to the morphology of the TPVs. That is, the TPV with Ph‐PP as a blend compatibilizer showed the smallest rubber particles dispersed in the PP matrix, while the reactive blending of ENR/PP‐g‐MA showed the largest particles. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 4729–4740, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号