首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 341 毫秒
1.
B-Zn复合掺杂的LNT微波介质陶瓷的低温烧结   总被引:1,自引:1,他引:0  
研究了烧结助剂B2O3、ZnO对Li0.925Nb0.375Ti0.8O3(LNT)陶瓷烧结特性及介电性能的影响。结果表明:B2O3-ZnO复合掺杂能有效降低烧结温度至900℃。ZnO的添加调节了LNT陶瓷正的频率温度系数,质量分数为1%的B2O3和4%的ZnO是最佳添加量,可得到εr为59.5,Q·f为7840GHz,τf为0×10–6℃–1的微波介质陶瓷材料。  相似文献   

2.
研究了Zr和Ti复合取代Ca[(Li1/3Nb2/3)0.95Zr0.15-xTix]O3+δ(0≤x≤0.15,CLNZT)陶瓷B位对其晶体结构及微波介电性能的影响,并分析了谐振频率温度系数τf随容忍因子t的变化关系。当0≤x≤0.15时,CLNZT陶瓷为单一斜方钙钛矿相,随x的增加,τf由–9.4×10–6/℃变为–15.8×10–6/℃,而品质因数与谐振频率乘积Q·f值先增大,x=0.10时又开始下降。当x=0.10时,陶瓷具有较好的微波介电性能:εr为32.8,Q·f值为1.66×104GHz,τf为–13.6×10–6/℃。  相似文献   

3.
掺杂Li_2CO_3低温烧结ZnO-TiO_2系介质陶瓷的研究   总被引:1,自引:0,他引:1  
用传统工艺合成了Li2CO3掺杂的ZnO-TiO2系微波介质陶瓷,系统研究了其烧结行为、显微结构和介电性能。结果表明:掺杂质量分数1%的Li2CO3可使ZnO-TiO2陶瓷的烧结温度从1100℃降到980℃;掺杂3%Li2CO3时,在950℃保温2h烧结,于6~8GHz测试试样的介电性能为:εr约为20,Q·f约为40000GHz,τf约为–14×10–6℃–1。  相似文献   

4.
采用XRD及SEM研究(Ca0.61Nd0.26)TiO3对微波介质陶瓷Ba4Sm9.33Ti18O54的结构和微波介电性能的影响。获得了一些性能较好的微波介质陶瓷(1–x)Ba4Sm9.33Ti18O54-x(Ca0.61Nd0.26)TiO3,其微波介电性能如下:εr=75,Q·f为8985GHz,τf为–8.2×10–6℃–1(x?=0);εr为75,Q·f为9552GHz,τf为–14.4×10–6℃–1(x?=0.2)。  相似文献   

5.
中温制备钛酸钕钙-钛酸钕锂系高介微波陶瓷   总被引:1,自引:1,他引:0  
将温度系数相反的钛酸钕钙(CNT)和钛酸钕锂(LNT)进行复合,中温下(1200℃)烧结获得了εr>100的CNT-LNT微波介质陶瓷。该陶瓷为斜方结构的CaTiO3基固溶体单相。介电常数随x增加先增加后减小,在x=0.5处最大。Q.f值和谐振频率温度系数随LNT含量增加而线性下降。中温下制备了性能良好的CNT-LNT系微波介质陶瓷,如x=0.6时微波性能为:εr=123.9,Q.f=1500GHz,τf=12.0×10–6℃–1。  相似文献   

6.
采用传统的固相反应法制备Li-Al-B(LAB)掺杂立方晶系Li2O-Nb2O5-TiO2(LNT)微波介电陶瓷。运用XRD、SEM和微波介电性能测试等手段,研究了LAB掺杂对样品烧结性能及微波介电性能的影响。结果表明,在LNT陶瓷中添加LAB,有效促进LNT陶瓷烧结,使材料的介电常数和品质因数显著提高。当掺入LAB的质量分数为4%时,样品在900℃保温2h后烧结致密,并获得最佳微波性能:介电常数εr=18.05,品质因数与频率的乘积Q×f=22 040GHz(f=6.41GHz),频率温度系数τf=-20.74×10-6/℃。  相似文献   

7.
采用固相法在880~975℃下烧结制备了添加w(CuO)为2.00%,w(B2O3)为3.00%及w(SnO2)为0.15%的ZnNb2O6-1.75TiO2基复合微波介质陶瓷。研究了该陶瓷的低温烧结机理、微波介电性能及其在多层片式陶瓷电容器中的应用。结果显示:随着烧结温度的提高,物相由Zn2TiO4,Zn0.17Nb0.33Ti0.5O2,ZnNb2O6向ZnTiNb2O8转变,εr和τf减小,Q·f升高。但当t≥975℃时,出现过烧现象,晶体缺陷增多恶化了材料的Q·f。在950℃烧结4h时,得到最好的介电性能:εr=36.7,τf=–22.6×10–6/℃,Q·f=18172.2GHz。且在此温度下制备的多层片式陶瓷电容与内电极Ag90Pd10的兼容性良好,Res为0.3426Ω,tanδ为9×10–5,可靠性良好。  相似文献   

8.
Ca_(0.125)(Li_(1/2)Sm_(1/2))_(0.875)TiO_3微波介质陶瓷的低温烧结   总被引:1,自引:1,他引:0  
研究了复合烧结助剂Na2O-CaO-B2O3(NCB)氧化物和Li2O-B2O3-SiO2-CaO-Al2O3(LBSCA)玻璃料的添加量对Ca0.125(Li1/2Sm1/2)0.875TiO3陶瓷相结构、烧结性能及介电性能的影响。当w(NCB)为10%,w(LBSCA)为1%~5%时,该陶瓷为斜方钙钛矿结构。随w(LBSCA)的增加,致密化温度和饱和体积密度降低,εr、Q·f值及τf呈下降趋势。当w(NCB)为10%,w(LBSCA)为2%时,陶瓷可在900℃烧结获得最佳性能:εr为63.00,Q·f为1260GHz,τf为–9.02×10–6℃–1。  相似文献   

9.
为了使微波介电陶瓷在厘米波段获得应用,采用固相法制备了低εr、高Q·f值的(1–x)CaWO4-xMg2SiO4(x=0~1.0)介电陶瓷,并添加质量分数为5%的TiO2调节其τf。研究了其晶相结构和微波介电性能。结果表明,x≤0.2时,Mg2SiO4和CaWO4形成不完全固溶体;x=0.2时,在1300℃烧结2h所制得的陶瓷具有优良的微波介电性能:εr=9.58,Q·f=56400GHz,τf=–8.2×10–6/℃,并采用该材料制作了f0=5.4909GHz,插入损耗小于1.1dB,外形尺寸为5.0mm×2.5mm×4.0mm的两级片式介质带通滤波器。  相似文献   

10.
用固相反应法制备了一系列铌锑酸镁(Sb含量x≤2)陶瓷,研究了该陶瓷的烧结性能、物相结构和微波介电性能。结果表明,当x≤1.6时,铌锑酸镁形成了连续固溶体,少量Sb5+对Nb5+的取代(0.4≤x≤0.8),使得陶瓷最佳烧结温度从1400℃降到1300℃,而材料εr和Q·f值没有降低。1300℃,5h烧结的铌锑酸镁陶瓷具有优异的微波介电性能:εr为11.61,Q·f为169820GHz,τf为–54.4×10–6℃–1。  相似文献   

11.
采用固相反应法制备了(1-y)(Mgo.7Zn0.3)1-xCoxTiO3-yCaTiO3(MZCCT)(x=0~0.2,Y=0.03~0.09)微波介质陶瓷.研究了Co和Ca掺杂对所制陶瓷的相结构、烧结性能和介电性能的影响.Co掺杂后,MZCCT陶瓷的密度增大,Q·f值从90 000 GHz提高到152 000 GH...  相似文献   

12.
Li_2ZnTi_3O_8微波介质陶瓷烧结工艺的研究   总被引:1,自引:0,他引:1  
采用传统固相反应法制得Li2ZnTi3O8微波介质陶瓷,研究了主要烧结工艺参数对所制陶瓷的物相组成、显微组织及微波介电性能的影响。结果表明:经900℃预烧并在1 075℃保温4 h所得陶瓷试样只含有单一的Li2ZnTi3O8相;另外,其显微组织均匀,气孔等缺陷较少,相对密度达到98.5%,且具有良好的介电性能:εr=26.6,Q·f=75 563 GHz,τf=–12.4×10–6/℃。  相似文献   

13.
用SnO2作为掺杂剂对LiNb0.6Ti0.5–xSnxO3陶瓷进行改性,研究了SnO2添加量对LiNb0.6Ti0.5O3锂铌钛体系陶瓷的烧结性能,显微结构和微波介电性能的影响。结果表明:随着SnO2添加量的增加,陶瓷体密度和介电常数基本保持不变;而Q·f值随SnO2的加入有所提高,而后随SnO2含量继续增加而快速下降;在1100℃的烧结温度下,当x为0.01时,获得微波介电性能优良的微波陶瓷,其εr为67.8,τf为+4×10–6/℃,Q·f为6780GHz。  相似文献   

14.
采用传统电子陶瓷制备方法研究了Co2O3(1.5%~5.0%,质量分数)掺杂的0.965MgTiO3-0.035SrTiO3(MST0.035)微波介质陶瓷,分析了Co2O3含量对MST0.035陶瓷的烧结性能、晶相结构、显微形貌以及微波介电性能的影响。结果表明:Co2O3的掺杂促进了MST0.035陶瓷的烧结。随着Co2O3掺杂量的增加,陶瓷介电常数略有下降,谐振频率温度系数以及品质因数增加,同时中间相MgTi2O5逐渐减少直至完全消失。当Co2O3掺杂量为质量分数3.0%时,MST0.035陶瓷的烧结温度由1 380℃降低到1 290℃,其烧结所得的样品具有优良的微波介电性能:谐振频率温度系数τf=–2.53×10–6/℃,高的品质因数Q·f=19 006 GHz和介电常数εr=20.5。  相似文献   

15.
采用传统固相工艺制备了Ba3.99Sm9.34Ti18O54(BSTO)微波介质陶瓷,研究了烧结助剂CuO对BSTO的结构及介电性能的影响。结果表明,添加CuO能较好促进BSTO晶粒致密化,降低烧结温度约140℃。当添加质量分数1.0%的CuO时,1220℃保温3h烧结的BSTO样品的介电性能较好:εr=86.87,Q·f=5138GHz(f=4.95GHz),τf=–10.84×10–6℃–1。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号