首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
J. Fuhrmann 《Fuel Cells》2016,16(6):704-714
A thermodynamically consistent model of an isothermal, incompressible ionic mixture in mechanical equilibrium is presented. It accounts for differing ion sizes and differing solvation numbers of the ionic species. For this model, a numerical solution procedure based on a two point flux finite volume ansatz on unstructured triangular meshes is developed. Based on a reformulation of the continuous problem in terms of absolute activities, the Scharfetter‐Gummel upwind scheme for semiconductor simulation is generalized to take into account finite ion size and solvation effects.  相似文献   

2.
An essentially predictive mathematical model was developed to simulate pervaporation process. The group contribution method UNIFAC was used for calculating the upstream activity coefficients. The diffusion coefficient in the membrane was predicted using free‐volume theory. Free‐volume parameters were determined with viscosity and temperature data, and the binary interaction solvent–polymer parameter was calculated by a group‐contribution lattice‐fluid equation of state (GCLF‐EOS). A simulator named PERVAP was developed applying the mathematical model. Pervaporation process was simulated for separating bioethanol–water through polyetherimide membrane. The simulated results were validated using experimental data of bioethanol/water separation through polyetherimide membrane. The model presented a satisfactory performance compared to experimental data. Related to the simulation of the studied separation, a 99% molar enriched bioethanol stream was obtained with a recovery of 94%. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

3.
The purpose of this article was to develop new membranes with a high selectivity and permeation rate for separation of an alcohol/water system. Crosslinked alginate composite membranes were prepared by casting an aqueous solution of alginate and 1,6‐hexanediamine (HDM) onto a hydrolyzed microporous polyacrylonitrile (PAN) membrane. The influence of hydrolysis of the support membrane and crosslinking agent content in a dense layer on the selectivity and flux was studied and it was shown that both could improve the separation performance of the composite membrane greatly. The countercation of alginate coatings as a dense separating layer also influenced the separation properties of the membrane, which was better for K+ than for Na+. This novel composite membrane with K+ as a counterion has a high separation factor of 891 and a good permeation rate of 591 g m−2 h−1 for pervaporation of a 90 wt % ethanol aqueous solution at 70°C. At the same time, SEM micrographs showed that the pore structure of the PAN microporous membrane is changed by hydrolysis. The reason for the influence of the preparation conditions on the separation performance of the novel membrane is discussed. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 3054–3061, 2000  相似文献   

4.
The current–voltage curves of a composite bipolar membrane (CBM) were experimentally measured by inserting the thin poly(acrylonitrile) (PAN) membrane between cation‐ and anion‐exchange membranes for water and methanol solutions. In each solution system, 0.05 mol/L LiCl was used as the electrolyte. The measured results show that the thin PAN membranes enhanced the water‐ and methanol‐splitting effect. This phenomenon can be explained by the protonation–deprotonation reactions occurring between the functional group of PAN ( CN, cyano) and the water or methanol molecules in the intermediate region of the CBM. The effect of niobium alloy (Nb3Ga), fullerene (C60) and titanium oxide (TiO2) existing in the intermediate region of the CBM was also experimentally examined in this study. It was found that the effect of these compounds on water or methanol‐splitting was not obvious. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 1597–1604, 2000  相似文献   

5.
Separation of components of aqueous waste streams containing organic pollutants is not only industrially very important but also is a challenging process. In this study, separation of a phenol–water mixture was carried out by using a membrane pervaporation technique with indigenously developed polyimide membranes. The membranes were found to permeate water selectively. The total flux as well as that of the individual components were measured. The effect of lithium chloride modification of polyimide film on total flux was investigated. The total flux obtained with 2% lithium chloride modification was about 3.6 times higher than that obtained with virgin membrane. The effects of different parameters such as feed composition and temperature on flux, and separation factor were determined. With modified membrane, a separation factor as high as 18.0 was obtained for water at 27°C and with 8.0 wt % phenol solution. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 822–829, 2002  相似文献   

6.
The polymerization kinetics of the reaction between diglycidylether of bisphenol A (DGEBA) and ethylenediamine (EDA) was analyzed, using dynamic scanning calorimetry, in both isothermal and programmed heating‐rate modes. A simple mechanistic model, consisting of an equilibrium reaction generating an epoxy–hydroxyl complex, and including two possible mechanisms for the consumption of amine hydrogens [(1) with free epoxy groups, (2) with the epoxy–hydroxyl complex], provided a reasonable fitting of the whole set of experimental results. It was found that the equilibrium constant decreased with temperature, making less important the reaction mechanism involving the epoxy–hydroxyl complex. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 2319–2325, 2001  相似文献   

7.
The thermokinetic behavior of blocked polyurethane (PU)–unsaturated polyester (UP)–based composites during the pultrusion of glass‐fiber‐reinforced composites was investigated utilizing a mathematical model that accounted for the heat transfer and heat generation during curing. The equations of continuity and energy balance, coupled with a kinetic expression for the curing system, were solved using a finite difference method to calculate the temperature profiles and conversion profiles in the thickness direction in a rectangular pultrusion die. A kinetic model, dP/dt = A exp(?E/RT)Pm(1 ? P)n, was proposed to describe the curing behavior of a blocked PU–UP resin. Kinetic parameters for the model were obtained from dynamic differential scanning calorimetry scans using a multiple regression technique, which was able to predict the effects of processing parameters on the pultrusion. The effects of processing parameters including pulling speed, die wall temperature, and die thickness on the performance of the pultrusion also were evaluated. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 1996–2002, 2003  相似文献   

8.
A membrane reactor–separator, in which an anion-exchange membrane and a urease-immobilized poly(vinyl alcohol) (PVA) membrane were clamped together to separate the feed solution and the stripping solution of a dialysis cell, was constructed. The urea in the feed solution passed through the anion-exchange membrane, water film, and then was hydrolyzed to ammonium carbamate in the urease-immobilized PVA membrane. The experimental results showed that no ammonium ion was found in the feed solution under either phosphate or citrate buffer systems at 0·05–0·2 mol dm?3 and pH 6–9, and various initial concentrations of urea in the feed solution (20–200 mmol dm?3). This indicates that the water film between two membranes allows the carbamate ions to decompose into ammonium and carbonate ions completely before entering the anion-exchange membrane. The device therefore can be used for the removal of urea from feed solution, while preventing the backflow of ammonium ions from the stripping solution or water film into feed solution. It has significant potential in the development of a wearable or portable artificial kidney. The properties of the urease-immobilized PVA membrane were examined. A kinetic model describing the transport-reaction behavior of urea in the membrane reactor–separator was developed, and the optimum values of the reactor parameters were obtained.  相似文献   

9.
The pervaporation separation of water–isopropanol mixtures was carried out using carboxymethylated poly(vinyl alcohol) (CMPVA) composite membranes. Carboxymethylated PVA (CMPVA) was synthesized by reacting PVA with various concentrations of monochloroacetic acid. Substitution efficiency of the CMPVA ranged from 12–32%. The cross‐sectional structure of the composite membrane for pervaporation was confirmed by scanning electron microscopy (SEM) exhibiting a 20‐μm active skin layer. Glass transition temperature of the CMPVA was in the range of 74–84°C, and decreased with increasing substitution efficiency. Degree of swelling and permeation flux for water–isopropanol in pervaporation increased with the substitution degree of carboxymethylation. CMPVA composite membrane, having 16% substitution efficiency, showed the following pervaporation performance; permeation flux of 831 g/m2 h and separation factor of 362 measured at 80°C and 85 wt % feed isopropanol concentration. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 241–249, 1999  相似文献   

10.
11.
Synergistic photocatalysis is reported, using the optimal amounts of oxygen vacancies of high‐k materials and nanoarchitecture maneuvering by employing a combinatorial sputtering approach. The highlights include (i) the successful fabrication of samples using combinatorial sputtering; (ii) a systematic investigation of the coupling effect between Y2O3?x and TiO2?x; (iii) elucidating charge carrier transport through current‐voltage (I‐V) and capacitance‐voltage (C‐V) characterizations; and (iv) providing an alternative application for high‐dielectric constant (high‐k) materials in photocatalysis. The simple yet effective composition spread technique rapidly determined that Sample 6 (4 at% Y2O3?x‐96 at% TiO2?x, TiO2?x‐rich on the Y2O3?x–TiO2?x nanorod composite composition spread) exhibited the highest photocatalytic efficiency (i.e., approximately 3.4 times and 1.4 times higher than that of P25 and pure TiO2?x nanorods, respectively). The predominant factor was determined to be electron migration along defective Y2O3?x nanorods to the sample surface. The extracted mobility was discovered to be an order of magnitude greater than that of pure TiO2?x. The photoelectrochemical stability and reusability were also demonstrated.  相似文献   

12.
Inverse gas chromatography (IGC) has been widely used to determine the Flory–Huggins parameters, χ, between solutes (probes) and polymers. This study correlated the Flory–Huggins parameter data using a multiparameter model, which included dispersion, polarity, acidity, and basicity components. The parameters of poly(ε‐caprolactone) (PCL) and polyepichlorohydrin (PECH) were calculated from IGC data using a series of probes. The parameters of the polymers were used to evaluate mutual miscibility between PCL and PECH. The results predicted miscibility in agreement with the conclusion of an IGC study using blends of PCL and PECH. A method to estimate the confidence interval of polymer parameters was proposed. The anomalous solubility parameter of polymer mixtures previously reported was also explained using this model. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

13.
Using Havriliak–Negami (HN) model of time–temperature superposition, dynamic mechanical properties for two thermorheologically simple engineering thermoplastics, viz., polyether ether ketone (PEEK) and polycarbonate (PC) were determined. Calculations have been made with respect to (i) temperature‐independent HN parameters from dynamic mechanical analysis (DMA) and (ii) activation energies of the deformation processes involved. Viscoelastic properties, over a wide frequency range, were predicted from the HN model, which were further correlated with the experimentally determined quantities and chemical structure of the polymers. The mathematical calculations were done using Matlab® software. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 677–683, 2006  相似文献   

14.
Large eddy simulation (LES) with the approximate deconvolution model is combined with Lagrangian particles simulation (LPS) for simulating turbulent reactive flows at high Schmidt numbers Sc. The LES is used to simulate velocity and nonreactive scalar while reactive scalars are simulated by the LPS using the mixing volume model for molecular diffusion. The LES–LPS is applied to turbulent scalar mixing layers with a second‐order isothermal irreversible reaction at Sc = 600. The mixing volume model is implemented with the IEM, Curl's, and modified Curl's mixing schemes. The mixing volume model provides a correct decay rate of nonreactive scalar variance at high Sc independently of the number of particles. The statistics in the LES–LPS with the IEM or modified Curl's mixing scheme agree well with the experiments for both moderately‐fast and rapid reactions. However, the LPS with the Curl's mixing scheme overpredicts the effects of the rapid reaction. © 2016 American Institute of Chemical Engineers AIChE J, 62: 2912–2922, 2016  相似文献   

15.
BACKGROUND: Ceramic membranes have received more attention than polymeric membranes for the separation and purification of bio‐products owing to their superior chemical, mechanical and thermal properties. Commercially available ceramic membranes are too expensive. This could be overcome by fabricating membranes using low‐cost raw materials. The aim of this work is to fabricate a low‐cost γ‐Al2O3–clay composite membrane and evaluate its potential for the separation of bovine serum albumin (BSA) as a function of pH, feed concentration and applied pressure. To achieve this, the membrane support is prepared using low‐cost clay mixtures instead of very expensive alumina, zirconia and titania materials. The cost of the membrane can be further reduced by preparing a γ‐alumina surface layer on the clay support using boehmite sol synthesized from inexpensive aluminium chloride instead of expensive aluminium alkoxide using a dip‐coating technique. RESULTS: The pore size distribution of the γ‐Al2O3‐clay composite membrane varied from 5.4–13.6 nm. The membrane was prepared using stable boehmite sol of narrow particle size distribution and mean particle size 30.9 nm. Scanning electron microscopy confirmed that the surface of the γ‐Al2O3–clay composite membrane is defect‐free. The pure water permeability of the support and the composite membrane were found to be 4.838 × 10?6 and 2.357 × 10?7 m3 m?2 s?1 kPa?1, respectively. The maximum rejection of BSA protein was found to be 95%. It was observed that the separation performance of the membrane in terms of flux and rejection strongly depends on the electrostatic interaction between the protein and charged membrane. CONCLUSION: The successively prepared γ‐Al2O3‐clay composite membrane proved to possess good potential for the separation of BSA with high yield and could be employed as a low cost alternate to expensive ceramic membranes. Copyright © 2009 Society of Chemical Industry  相似文献   

16.
17.
Carbon membrane consisting of a mixture of powdered activated carbon and poly vinyl alcohol/N‐vinyl pyrrolidone was made by single freezing and thawing followed by gamma‐ray irradiation. The prepared membrane was characterized by X‐ray diffraction, scanning electron microscopy, and gel content. The membrane was applied for adsorption of some hazardous wastes (acid dye, basic dye, heavy metal ions such as Co and Ni, dichromate anion, and phenols) from their solutions. From the results, it was found that the prepared membrane possesses greater efficiency toward removal of heavy metal ions than powdered activated carbon, whereas their adsorption capacity toward dyes and phenol is almost the same as active carbon. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

18.
Samples of ceria–zirconia pre-treated under various conditions have been used as catalysts in CO and soot oxidation under stationary and transient conditions, in the presence and in the absence of oxygen. Their behaviour has been compared with that observed under redox conditions in the presence of hydrogen (oxygen storage activity). All the catalysts are active in CO and soot oxidation. Under stationary conditions, the activity in CO oxidation depends on the amount of Ce present, with little contribution from the redox capacity of the support and is strongly influenced by surface area. When the reaction is carried out under transient conditions, especially with low-surface area samples, the performances of ceria–zirconia are higher than those of ceria, with a maximum in the middle composition range. Interestingly, a similar behaviour is observed in soot combustion, where the activity for low-surface area sample is dependent on composition. This suggests that oxygen from the support plays a key role also in the oxidation of large carbon particles under a fully oxidizing mixture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号