首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cu–Fe binary alloys containing 20–50wt. % Fe were studied by the combination of the melt fluxing and cyclic superheating technique. The microstructural evolution of Cu–Fe alloys was investigated with scanning electron microscopy. When the undercooling was larger than the critical undercooling, the Fe-rich spheroids were embedded into a Cu-rich matrix and the metastable phase separation was observed in microstructures. The size of separated particles in the Cu-35wt.% Fe alloy was larger than that of other Cu–Fe alloys with different compositions and the size of separated droplets was related to the ΔTS, which was equal to the undercooling (ΔT) minus the critical undercooling (ΔTC). Moreover, a large undercooling tended to promote the coagulation of the separated droplets, so the size of the separated Fe-rich spheroids in the microstructure of the immiscible Cu–Fe alloys increased with the increase in the undercooling.  相似文献   

2.
The structural and phase transformations and atomic redistribution induced by neutron irradiation have been investigated in aging fcc Fe–Ni alloys using special alloying with elements M (Si, Ti, Al, Zr) that form intermetallic compounds. It has been established that the mechanism and kinetics of disturbance of regions of Ni–M atomic order in atomic displacement cascades upon neutron irradiation are linked to the chemical activity and diffusion mobility of alloying elements. Comparison with the laws of the deformationinduced dissolution of intermetallic compounds has been conducted.  相似文献   

3.
Sluggish diffusion kinetics is an important contributor to the outstanding properties of high-entropy alloys. However, the diffusion kinetics in high-entropy alloys has never been probed directly. Here, the diffusion couple method was used to measure the diffusion parameters of Co, Cr, Fe, Mn and Ni in ideal-solution-like Co–Cr–Fe–Mn–Ni alloys. These parameters were compared with those in various conventional face-centered cubic metals. The results show that the diffusion coefficients in the Co–Cr–Fe–Mn–Ni alloys are indeed lower than those in the reference metals. Correspondingly, the activation energies in the high-entropy alloys are higher than those in the reference metals. Moreover, the trend of the normalized activation energy is positively related to the number of composing elements in the matrix. A quasi-chemical model is proposed to analyze the fluctuation of lattice potential energy in different matrices and to explain the observed trend in activation energies. Greater fluctuation of lattice potential energy produces more significant atomic traps and blocks, leading to higher activation energies, and thus accounts for the sluggish diffusion in high-entropy alloys.  相似文献   

4.
The “transformation stasis” phenomenon during the isothermal bainitic ferrite formation has been investigated in a series of Fe–C–Mn and Fe–C–Mn–Si alloys. The Gibbs energy balance (GEB) approach is applied to model the transformation stasis phenomenon, and theoretical predictions are compared with experimental observations. The good agreement over several alloy systems demonstrates that the transformation stasis is caused by diffusion of alloying elements into the migrating austenite/bainitic ferrite interfaces. It is found that the occurrence of transformation stasis in the Fe–C–Mn and Fe–C–Mn–Si alloys depends on the concentration of Mn, while the addition of Si has a negligible effect on transformation stasis. The GEB model clearly outperforms the diffusionless T0 model.  相似文献   

5.
High Mn steels demonstrate an exceptional combination of high strength and ductility owing to their sustained high work hardening rate during deformation. In the present work, the microstructural evolution and work hardening of Fe–30Mn and Fe–24Mn alloys during uniaxial tensile testing at 293 K and 77 K were investigated. The Fe–30Mn alloy did not undergo significant strain-induced phase transformations or twinning during deformation at 293 K, whereas these transformations were observed during deformation at 77 K. A modified Kocks–Mecking model was successfully applied to describe the strain hardening behavior of Fe–30Mn at both temperatures, and quantitatively identified the influence of stacking fault energy and strain-induced phase transformations on dynamic recovery. The Fe–24Mn alloy underwent extensive ε martensite transformation during deformation at both test temperatures. An analytical micromechanical model was successfully used to describe the work hardening of Fe–24Mn and permitted the calculation of the ε martensite stress–strain curve and tensile properties.  相似文献   

6.
《Acta Materialia》2000,48(9):2297-2306
Bridgman crystal growth experiments were carried out to investigate the solidification behavior of Fe–Ni alloys containing nominally between 4 and 4.5 at.% Ni. Due to macrosegregation, a radial concentration gradient was established across the cylindrical specimens. Due to this gradient, a series of solid/liquid interface morphologies was observed. Oriented two-phase microstructures, which formed either lamellar or fibrous δ-ferrite in an austenite (γ) matrix, were found in the central region of specimens with a composition of some 4.2 at.% Ni and a G/V ratio close to the critical ratio for solid/liquid interface breakdown. At slightly smaller concentrations, oscillatory two-phase structures formed which were similar to the 2-λ instabilities of off-eutectic alloys. The observations confirm that at low solidification rates the stable growth morphology in peritectic alloys cannot be selected by the highest growth temperature criterion. A recently developed nucleation and constitutional undercooling criterion (NCU) was applied to establish a solidification microstructure selection map. Reasonable agreement was obtained between calculated and experimental results. Based on eutectic growth theory the possibility of simultaneous two-phase growth in peritectic alloys is discussed.  相似文献   

7.
In this article,the effect of sulfur on the reduction of Fe concentration in aluminum alloy scraps was investigated.The iron content decreases from1.224 wt% to \0.854 wt% and achieves an optimal ratio of30 % when the sulfur addition is 3 %.Thermodynamic calculations,the X-ray diffraction(XRD),scanning electron microscope(SEM),and differential scanning calorimetry(DSC)analyses of the sample indicate that the formation of Fe S can occur spontaneously in molten aluminum with the addition of sulfur.The mechanism of Feremoving purification process was also discussed.  相似文献   

8.
It has been suggested that intrinsic ductile versus brittle properties of alloys be connected with bonding characters in some sense while there is no much proof. In this investigation, 27Al isotropic metallic shifts of Al–Li solid solutions were measured by 27Al NMR spectroscopy. Previously observed anomalous elastic properties upon Li alloying were found to be closely related to 27Al metallic shifts which were associated with s electron density of states at the Fermi level on Al sites. This result is relevant for better understanding of electronic origin of solid solution strengthening mechanisms in Al–Li alloys from the point of view of electronic structure.  相似文献   

9.
《Acta Materialia》2002,50(4):725-734
The change of the primary solidification mode of undercooled peritectic Fe–Mo melts has been studied by in situ observation of recalescence events during electromagnetic levitation. A maximum melt undercooling up to 380 K has been achieved. Levitated drops of controlled undercooling were quenched onto chill substrates and subjected to phase and microstructure analysis. A transition from the primary bcc-Mo to the peritectic σ-phase solidification mode beyond a critical undercooling of 345 K was revealed for the Fe47Mo53 alloy and in a similar way for other compositions between Fe45Mo55 and Fe54Mo46. The suppression of the properitectic bcc-Mo phase was also achieved for subcritical undercooling in substrate-quenched Fe45Mo55 samples. In Fe61Mo39 a transition from the primary σ- to the peritectic R-phase solidification mode beyond a critical undercooling of 150 K was inferred from recalescence processes and X-ray investigation of as-quenched undercooled samples.  相似文献   

10.
《Scripta materialia》2002,46(11):805-810
The lattice parameters (LPs) of the metastable face-centered cubic and hexagonal close-packed phases in Fe–Mn–Co system have been determined. The LP of the γ phase shows a striking behaviour, which is explained by invoking magnetic effect. The relative volume difference accompanying the martensitic transition is discussed.  相似文献   

11.
N. Stanford  D.P. Dunne 《Acta Materialia》2010,58(20):6752-6762
Fe–Mn–Si is a well-characterized ternary shape memory alloy. Research on this alloy has consistently shown that the addition of 5–6 wt.% Si is desirable to enhance the reversibility of stress-induced martensite vis-à-vis shape memory. This paper examines the effect of Si on the morphology and the crystallography of the martensite in the Fe–Mn–Si system. It is concluded that the addition of Si increases the c/a ratio of the martensite, reduces the transformation volume change and decreases the atomic spacing difference between the parallel close-packed directions in the austenite–martensite interface (habit) plane. It is proposed that, in addition to austenite strengthening, Si enhances reversibility by reducing the volume change and the interfacial atomic mismatch between the martensite and the austenite. Although shape memory is improved, transformation reversibility remains limited by the necessary misfit dislocations that accommodate the atomic spacing differences in the interface.  相似文献   

12.
The kinetics of isothermal austenite(γ)-to-ferrite(α) transformation at various temperatures in Fe-2 Mn and Fe-2 Mn-0.5 Mo(wt%) alloys is investigated via dilatometry experiments and phase-field modeling.It was interestingly found that Mo addition has a marginal effect on the transformation kinetics.Besides the well-known partitioning and partitionless transformation modes,a new kinetic mode,in which interface migration is controlled by interfacial diffusion,was identified.The phase-field model with considering interfacial segregation could well predict the transformation kinetics and the kinetic mode transition.  相似文献   

13.
Ab initio calculations are becoming increasingly useful to engineers interested in designing new alloys, because these calculations are able to accurately predict basic material properties only knowing the atomic composition of the material. In this paper, single crystal elastic constants of 11 bcc Mg–Li alloys are calculated using density functional theory (DFT) and compared with available experimental data. Based on DFT determined properties, engineering parameters such as the ratio of bulk modulus over shear modulus (B/G) and the ratio of Young’s modulus over mass density (Y/ρ) are calculated. Analysis of B/G and Y/ρ shows that bcc Mg–Li alloys with 30–50 at.% Li offer the most potential as lightweight structural material. Compared with fcc Al–Li alloys, bcc Mg–Li alloys have a lower B/G ratio, but a comparable Y/ρ ratio. An Ashby map containing Y/ρ vs B/G shows that it is not possible to increase both Y/ρ and B/G by changing only the composition of a binary alloy.  相似文献   

14.
《Scripta materialia》2004,50(11):1389-1393
The effects of increasing chromium content on the phase transformations in Fe–Al–Mn–Cr alloys have been investigated by means of transmission electron microscopy and energy-dispersive X-ray spectrometry. The experimental results revealed that increasing the chromium addition would expand both the A12α-Mn and DO3 phase-field regions.  相似文献   

15.
For Ni–Mn–Ga alloys, giant magnetic-field-induced strains may be achieved in a modulated martensitic state, offering attractive chances for academic and practical exploration. However, the metastability of modulated martensite imposes a severe constraint on the capacity of these alloys as promising materials for sensors and actuators. In the present work, we conduct both experimental examinations and ab initio calculations to seek potential remedies of this critical problem through composition tuning. Results show that, for Group II alloys having modulated martensite at reasonable temperatures, the increase in Ni addition results in an enhanced tendency to the formation of non-modulated (NM) martensite, whereas the proper Mn addition leads to the stabilization of seven-layered modulated (7M) martensite, which serves as the structural ground state of martensite. By correlating the microstructural evolutions with the two-stage phase transformation (i.e. austenite  7M martensite  NM martensite), it is demonstrated that the 7M martensite possesses lower energy barriers in terms of the lattice distortion of parent austenite and the interfacial energy of martensitic variants, which plays a vital role in bridging the austenite to NM martensite transformation. This result is expected to provide useful information for the design of these new functional materials.  相似文献   

16.
Carbon enrichment in untransformed austenite at the end of Mn partitionless growth of ferrite for Fe–2Mn–(0.05, 0.14)C (mass%) alloys isothermally transformed in the temperature range 873–998 K was measured using field-emission electron probe microanalysis to reveal its dependence on the transformation temperature, nominal carbon content and prior austenite grain size. The PLE/NPLE model gives much better predictions than the PE model for carbon enrichment in untransformed austenite at the end of partitionless growth. Carbon enrichment could be increased by reducing the prior austenite grain size. Furthermore, carbon enrichment shifted from the PLE/NPLE transition line to the T0 line on lowering the transformation temperature. This shift is probably attributed to the solute drag effect and/or to the finite interface mobility, both of which vary with the transformation temperature.  相似文献   

17.
We have succeeded to fabricate body-centered cubic (bcc) single phase of Fe–Mn–Ga alloys using melt-spinning technique. Heusler type L21 structure of Fe2MnGa alloy are predicted to have half-metallic properties, however bulk Fe2MnGa alloys crystallize into face-centered cubic (fcc) lattice with small admixture of bcc phase. By changing either ejection temperature or rotation speed of melt-spinning processing parameters, fcc or bcc lattice can be obtained from same precursor ingot. For stoichiometric Fe2MnGa as-spun alloy, super-lattice diffraction peaks indicative of L21 structure are observed from XRD measurements. The as-spun bcc alloys transform into ferromagnetic hexagonal lattice by thermal annealing.  相似文献   

18.
The effect of O on the phase relations at 950 °C in Fe–15Cr–1Nb alloys is experimentally investigated. Fe–15Cr–1Nb alloys are oxygenated by subjecting high-purity Fe–15Cr–1Nb to an O atmosphere at 600 °C. Both the high-purity and the oxygenated Fe–15Cr–1Nb alloys are heat treated for up to 500 h at 950 °C, quenched and investigated by scanning electron microscopy, transmission electron microscopy and electron probe microanalysis. The results show that Fe2Nb is in equilibrium with α (Fe, Cr) with 0.29 at.% Nb in solid solution in the pure Fe–15Cr–1Nb alloy. The presence of a small amount of O induces the precipitation of a Fe6Nb6Ox phase with a cubic crystal structure and lattice parameter 1.13 nm, thereby decreasing the Nb in solid solution in α (Fe, Cr) with increasing O content.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号