首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Self-assembled GaN quantum dots (QDs), grown on AlN by molecular beam epitaxy, were investigated by time-resolved photoluminescence spectroscopy. We investigate the emission mechanism in GaN QDs by comparing the carrier recombination dynamics in single and multiple period QDs. At 100 K, the PL decay time in single period QD structures is considerably shorter than in stacked QDs. Compared to single period QDs, the room temperature PL efficiency is considerably enhanced in 20 period QDs due to the reduction in nonradiative recombination processes.  相似文献   

2.
The aim of this study is to achieve homogeneous, high density and dislocation free InGaAs quantum dots grown by molecular beam epitaxy for light emission on silicon substrates. This work is part of a project which aims at overcoming the severe limitation suffered by silicon regarding its optoelectronic applications, especially efficient light emission device. For this study, one of the key points is to overcome the expected type II InGaAs/Si interface by inserting the InGaAs quantum dots inside a thin silicon quantum well in SiO2 fabricated on a SOI substrate. Confinement effects of the Si/SiO2 quantum well are expected to heighten the indirect silicon bandgap and then give rise to a type I interface with the InGaAs quantum dots. Band structure and optical properties are modeled within the tight binding approximation: direct energy bandgap is demonstrated in SiO2/Si/InAs/Si/SiO2 heterostructures for very thin Si layers and absorption coefficient is calculated. Thinned SOI substrates are successfully prepared using successive etching process resulting in a 2 nm-thick Si layer on top of silica. Another key point to get light emission from InGaAs quantum dots is to avoid any dislocations or defects in the quantum dots. We investigate the quantum dot size distribution, density and structural quality at different V/III beam equivalent pressure ratios, different growth temperatures and as a function of the amount of deposited material. This study was performed for InGaAs quantum dots grown on Si(001) substrates. The capping of InGaAs quantum dots by a silicon epilayer is performed in order to get efficient photoluminescence emission from quantum dots. Scanning transmission electronic microscopy images are used to study the structural quality of the quantum dots. Dislocation free In50Ga50As QDs are successfully obtained on a (001) silicon substrate. The analysis of QDs capped with silicon by Rutherford Backscattering Spectrometry in a channeling geometry is also presented.  相似文献   

3.
We report on growth of MnTe layers by molecular beam epitaxy on Al2O3 substrates and of ZnTe layers on hybrid MnTe/Al2O3 substrates. The aim of our work was to prepare hexagonal phases of epitaxial thin films of these two materials. In the case of MnTe, the hexagonal NiAs-type phase was prepared by depositing the film directly on Al2O3 substrates. On the other hand, the crystal structure of ZnTe layers grown on hybrid MnTe/Al2O3 substrates was found to depend on the layer thickness: layers thinner than 0.05 μm grew in a metastable hexagonal wurtzite structure, but with further increases of the thickness, the cubic zinc blende phase of ZnTe tended to appear. The structural properties of MnTe and ZnTe layers were characterized by high energy electron and X-ray diffraction methods. Electrical properties of MnTe films were assessed by the Hall effect measurements. The topography and microstructure were analyzed by atomic force microscope. The Néel temperature and magnetic domains structure of antiferromagnetic hexagonal MnTe layers were obtained from neutron experiments.  相似文献   

4.
The effect of substrate temperature, 390-480?°C, during molecular beam epitaxy growth of InAsN quantum dots has been studied. The quantum dot formation was studied in situ, and it is shown that the quantum dots are close to fully relaxed within 4 monolayers (ML) of InAsN deposition. Further, the indium concentration was estimated to be 84%, 67%, 55% and 31% for 4?ML thick quantum dots grown at 390, 420, 450 and 480?°C, respectively. Thus, Ga incorporation was demonstrated at all substrate temperatures. The dot diameter and height increased from 23 to 38?nm, and 2.5 to 8.9?nm, respectively, when the growth temperature was increased from 390 to 480?°C. The 5?K photoluminescence intensity and wavelength both increased with substrate temperature.  相似文献   

5.
We investigate correlation effects in the regime of a few electrons in uncapped InAs quantum dots by tunneling spectroscopy and wave function (WF) mapping at high tunneling currents where electron-electron interactions become relevant. Four clearly resolved states are found, whose approximate symmetries are roughly s and p, in order of increasing energy. Because the major axes of the p-like states coincide, the WF sequence is inconsistent with the imaging of independent-electron orbitals. The results are explained in terms of many-body tunneling theory, by comparing measured maps with those calculated by taking correlation effects into account.  相似文献   

6.
InAs(Sb) quantum dots (QDs) samples were grown on GaAs (001) substrate by Molecular Beam Epitaxy (MBE). The structural characterization by Atomic Force Microscopy (AFM) of samples shows that InAsSb islands size increases strongly with antimony incorporation in InAs/GaAs QDs and decreases with reducing the growth temperature from 520 °C to 490 °C. Abnormal optical behaviour was observed in room temperature (RT) photoluminescence (PL) spectra of samples grown at high temperature (520 °C). Temperature dependent PL study was investigated and reveals an anomalous evolution of emission peak energy (EPE) of InAsSb islands, well-known as “S-inverted curve” and attributed to the release of confined carriers from the InAsSb QDs ground states to the InAsSb wetting layer (WL) states. With only decreasing the growth temperature, the S-inverted shape was suppressed indicating a fulfilled 3D-confinement of carriers in the InAsSb/GaAs QD sample.  相似文献   

7.
The first original results on the growth of quantum dots (QDs) in the InSb/InAs system by liquid phase epitaxy (LPE) are reported. The density and dimensions of QDs were studied by methods of scanning probe microscopy and atomic force microscopy. The surface density, shapes, and dimensions of LPE-grown nanoislands depend on the growth conditions (temperature, cooling rate, and solution melt-substrate contact time). In the interval of temperatures T = 420–445°C, homogeneous arrays of InSb quantum dots on InAs(100) substrates were obtained with an average height of H = 3.4 ± 1nm, a radius of R = 27.2 ± 7.5 nm, and a density of up to 1.9 × 1010 cm?2.  相似文献   

8.
We demonstrate a method to controllably reduce the density of self-assembled InP quantum dots (QDs) by cyclic deposition with growth interruptions. Varying the number of cycles enabled a reduction of the QD density from 7.4 × 10(10) cm(-2) to 1.8 × 10(9) cm(-2) for the same total amount of deposited InP. Simultaneously, a systematic increase of the QD size could be observed. Emission characteristics of different-sized InP QDs were analyzed. Excitation power dependent and time-resolved measurements confirm a transition from type I to type II band alignment for large InP quantum dots. Photon autocorrelation measurements of type I QDs performed under pulsed excitation reveal pronounced antibunching (g((2))(τ = 0) = 0.06 ± 0.03) as expected for a single-photon emitter. The described growth routine has great promise for the exploitation of InP QDs as quantum emitters.  相似文献   

9.
This paper explores the significance of using bismuth as a surfactant during the molecular beam epitaxy growth of InAs quantum dots (QDs). The results show that Bi-mediated growth provides a practical solution towards achieving lower density QDs with high optical quality. The InAs QDs grown using Bi as a surfactant exhibit a 50 % lower QD density, narrower QD size distribution, and a doubled photoluminescence peak intensity at 16 K compared to those grown without Bi.  相似文献   

10.
We present the growth of single, site-controlled InAs quantum dots on GaAs templates using UV-nanoimprint lithography and molecular beam epitaxy. A large quantum dot array with a period of 1.5 μm was achieved. Single quantum dots were studied by steady-state and time-resolved micro-photoluminescence experiments. We obtained single exciton emission with a linewidth of 45 μeV. In time-resolved experiments, we observed decay times of about 670 ps. Our results underline the potential of nanoimprint lithography and molecular beam epitaxy to create large-scale, single quantum dot arrays.  相似文献   

11.
Yu Y  Li MF  He JF  Zhu Y  Wang LJ  Ni HQ  He ZH  Niu ZC 《Nanotechnology》2012,23(6):065706
We report a systematic optical spectroscopy study of low density InAs quantum clusters (QCs) grown by molecular beam epitaxy. The photoluminescence (PL) spectra show emission features of a wetting layer (WL) which contains hybridized quantum well states. The low-energy tail of the QCs' PL profile is actually an ensemble of some sharp lines, originating from the emission of different exciton states (e.g. X, X*, XX*) in a single quasi-three-dimensional (Q3D) cluster as detailed in the micro-PL spectra. The temperature dependence of PL spectra indicates photocarrier distribution and transport in the QC-WL system. Furthermore, this small InAs Q3D cluster is integrated with a distributed Bragg reflector structure, and using optical excitation creates a single photon source with the second-order correlation function of g((2))(0) = 0.31 at 16 K.  相似文献   

12.
Jie Zhao  Yiping Zeng  Chao Liu  Lijie Cui 《Vacuum》2012,86(8):1062-1066
The structural properties, crystalline quality and surface morphology of CdTe thin films without and with a ZnTe buffer layer grown on (001)GaAs by molecular beam epitaxy (MBE) have been studied. CdTe thin film directly prepared on GaAs substrate displays (111) orientation with an island growth mode, whereas the CdTe epilayers with a ZnTe buffer are (001)-oriented single-crystalline film with a two-dimensional (2D) growth mode. The morphology and surface root-mean-square (RMS) roughness of CdTe epilayers are also dramatically improved by using a ZnTe buffer. Furthermore, it is suggested that the high-temperature (HT) ZnTe buffer grown at 360 °C is more efficient for enhancing CdTe structural quality than the low-temperature (LT) one at 320 °C. The CdTe epilayer on the HT-ZnTe buffer shows a narrower full-width at half-maximum (FWHM) of double-crystal X-ray rocking curve (DCXRC) for (004) reflection and a smaller RMS roughness.  相似文献   

13.
AlN/GaN superlattices with layer thickness between 0.5 and 20 nm have been grown. The substrates were (6H)-SiC(0001) and Al2O3(0001) (sapphire). The growth was performed using a modified gas source molecular beam epitaxy (MBE) technique. Standard effusion cells were used as sources of aluminum and gallium, and a small, MBE-compatible, electron cyclotron resonance plasma source was used to activate nitrogen gas prior to deposition. Auger, X-ray, and transmission electron microscopy studies confirmed the existence of well-defined layers. High resolution electron microscopy revealed pseudomorphic behavior between the two materials for layers thinner than 6 nm. By contrast, completely relaxed individual layers of GaN and AlN with respect to each other were present for bilayer periods above 20 nm. Cathodoluminescence showed a shift in the emission peak of up to 0.7 eV. The observed emission energy shifts were used to estimate the band discontinuities.  相似文献   

14.
The first stages of the growth of strained GaN on AlN were studied using reflection high energy electron diffraction, atomic force microscopy and high resolution electron microscopy. It was shown that GaN grows in the Stranski–Krastanov mode, with three-dimensional islanding occuring after deposition of two monolayers. This 2D/3D transition was found to depend on the growth temperature. At low growth temperature, coalescence of 3D islands rapidly leads to a smooth surface. At high temperature, no smoothing process is observed. It is shown that the size of the 3D islands is controlable and that it is small enough to expect quantum effects.  相似文献   

15.
High-density GaN nanorods with outstanding crystal quality were grown on c-sapphire substrates by radio-frequency plasma-assisted metalorganic molecular beam epitaxy under catalyst- and template-free growth condition. Morphological and structural characterization of the GaN nanorods was employed by X-ray diffraction, energy dispersive X-ray spectroscopy, scanning electron microscopy, and high-resolution transmission electron microscopy (HRTEM). These results indicate that the rod number density can reach 1/spl times/10/sup 10/ cm/sup -2/ and the nanorods are well-aligned with preferentially oriented in the c-axis direction. Meanwhile, no metallic (Ga) droplet was observed at the end of the rods, which is the intrinsic feature of vapor-liquid-solid method. Nanorods with no traces of any extended defects, as confirmed by TEM, were obtained as well. In addition, optical investigation was carried out by temperature- and power-dependent micro-photoluminescence (/spl mu/-PL). The PL peak energies are red-shifted with increasing excitation power, which is attributed to many-body effects of free carriers under high excitation intensity. The growth mechanism is discussed on the basis of the experimental results. Catalyst-free GaN nanorods presented here might have a high potential for applications in nanoscale photonic devices.  相似文献   

16.
Molecular beam epitaxy was used to fabricate GaAsN/GaAs and InGaAsN/GaAs heterostructures, and the influence of the growth regimes on their characteristics was studied. It is shown that implantation of nitrogen causes a substantial long-wavelength shift of the radiation. The possibility of obtaining 1.4 μm radiation at room temperature was demonstrated using In0.28Ga0.72As0.97N0.03/GaAs quantum wells. Pis’ma Zh. Tekh. Fiz. 24, 81–87 (December 12, 1998)  相似文献   

17.
We report the growth of GaAsSb nanowires (NWs) on GaAs(111)B substrates by Au-assisted molecular beam epitaxy. The structural characteristics of the GaAsSb NWs have been investigated in detail. Their Sb mole fraction was found to be about?25%. Their crystal structure was found to be pure zinc blende (ZB), in contrast to the wurtzite structure observed in GaAs NWs grown under similar conditions. The ZB GaAsSb NWs exhibit rotational twins around their [111]B growth axis, with twin-free segments as long as 500?nm. The total volumes of GaAsSb segments with twinned and un-twinned orientations, respectively, were found to be equal by x-ray diffraction analysis of NW ensembles.  相似文献   

18.
Self-assembled GaAs anti quantum dots (AQDs) were grown in an InAs matrix via migration enhanced molecular beam epitaxy. The transmission electron microscopy image showed that the 2D to 3D transition thickness is below 1.5 monolayers (MLs) of GaAs coverage. The average diameter and height of the GaAs AQDs for 1.5 ML GaAs coverage taken from the atomic force microscopy image were approximately 29.0 nm and 1.4 nm, respectively. The density was approximately 6.0 x 10(10) cm(-2). The size of the AQDs was enlarged in the InAs matrix compared with that on the surface. These results indicate that the GaAs AQDs in the InAs matrix under tensile strain can be effectively formed with the assistance of the migration enhanced epitaxy method.  相似文献   

19.
We report for the first time the barrier heights of Cu, Ni, Ag, Ti on etched n-type Al0.33Ga0.67As and their dependence on annealing temperature with I–V and C–V techniques. The barrier heights of Al and Au, measured for comparison, are 0.96 and 1.06 eV, respectively, in excellent agreement with the results reported previously. The barrier heights of the Cu, Ni, Ag and Ti/n---Al0.33Ga0.67As diodes are found to be 1.08, 0.90, 0.87 and 0.87 eV, respectively. It is observed that the barrier heights for Al, Au, Cu and Ti contacts monotonically decrease with annealing temperature. For the Ag and Ni contacts, however, they become higher after being annealed at 473 K for 10 min and become lower thereafter, accompanied by a change of their ideality factors in opposite direction. The barrier heights extrapolated from C–V measurements for all metals studied are higher than that deduced from I–V data, and become higher after annealing at high temperatures, indicating the existence of a thin oxide layer at interface and broadening of the oxide after annealing. Our results can be qualitatively explained by the quality of contact and defects created at the semiconductor surface due to interdiffusion.  相似文献   

20.
The influence of N flux during molecular beam epitaxy growth of InAsN quantum dots was studied. Growth of InAsN dots under high N flux was shown to give rise to an abnormal growth behaviour compared to InAs dots and InAsN dots with lower nitrogen content. Cubic In(x)Ga(1-x)N (x = 0.21 ± 0.01) crystallites were found in samples grown with an excessive N?flux. The crystallites are likely to form ~0.6?monolayers (MLs) after the quantum dots have nucleated, when the quantum dot changes growth mode. In addition, it is shown that a bimodal size distribution of InAsN quantum dots was generated in the wetting layer during the dot growth, as opposed to nucleation at N-induced dislocations at the substrate surface. The bimodal distribution may be explained by an increased energy barrier, in the presence of nitrogen, for atomic incorporation into the dots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号