首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cobalt oxide (Co3O4) nanoparticles were successfully synthesized by the cetyltrimethylammonium bromide (CTAB)-assisted method at normal pressure for the first time. The structure and morphology of the as-prepared Co3O4 nanoparticles were characterized by powder X-ray diffracton (XRD), infrared spectroscopy (IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and N2-sorption analysis. XRD studies indicated that the as-prepared product was well-crystallized cubic phase of Co3O4 with a cell constant of α = 8.0722 Å. The EM images showed that the obtained Co3O4 sample consisted of dispersive quasi-spherical particles with the size ranged from 15 to 25 nm.  相似文献   

2.
An Au/Fe3O4 nanocomposite catalyst was fabricated through a simple deposition-precipitation method. The Au/Fe3O4 nanocomposite is a true nanocomposite that has single crystalline Au nanoparticles supported on single crystalline Fe3O4 nanoparticles. Lattice fringes from both Au and Fe3O4 single nanoparticles were simultaneously observed by transmission electron microscope (TEM). This nanocomposite catalyst showed much high activity in low temperature CO oxidation reaction. The Au/Fe3O4 nanocomposite catalyst reaches 100% CO conversion at 40 °C. In comparison, Au/commercial Fe3O4 catalyst needs 375 °C to convert CO. This Au/Fe3O4 nanocomposite is an ideal sample to study synergetic effect between the catalyst and the support at nanoscale.  相似文献   

3.
Hongxiao Yang 《Materials Letters》2010,64(13):1418-1420
In this work, we demonstrate that monodisperse indium hydroxide (In(OH)3) nanorods constructed with parallel wire-like subunits have been fabricated via a acrylamide-assisted synthesis route without any template. NH3 from the hydrolysis of acrylamide acts as the OH provider. The structure and morphology of as-prepared products have been characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM) and thermogravimetric analysis (TG). A detailed mechanism has been proposed on the basis of time-dependent experimental results. Furthermore, by annealing In(OH)3 precursors at 500 °C for 3 h in air, In2O3 samples were obtained with the designed morphology.  相似文献   

4.
The synthesis of the single-crystal Co3O4 nanorods by molten salt approach was reported for the first time. The products were characterized by Transmission electron microscopy (TEM), X-ray diffraction (XRD), High-resolution transmission electron microscopy (HRTEM) and Selected-area electron diffraction (SAED). TEM results indicate that these nanorods have diameters of about 150 nm and lengths of about 2 μm. According to the analysis of the SAED and HRTEM results, we drew the conclusion that these nanorods grew along an unusual [− 1,− 1,15] direction by Ostwald ripening mechanism.  相似文献   

5.
A novel approach, combining in-situ composite method with electrospinning, was used to prepare high magnetic Fe3O4/poly(vinyl alcohol) (PVA) composite nanofibers. Fe3O4 magnetic fluids were synthesized by chemical co-precipitation method in the presence of 6 wt.% PVA aqueous solution. PVA was used as stabilizer and polymeric matrix. The resulting Fe3O4/PVA composite nanofibers were characterized with field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and X-ray diffractometer (XRD), respectively. These composite fibers showed a uniform and continuous morphology, with the Fe3O4 nanoparticles embedded in the fibers. Magnetization test confirmed that the composite fiber showed a high saturated magnetization (Ms = 2.42 emµ·g-1) although only 4 wt.% content.  相似文献   

6.
Self-assembled 3D flower-like NaY(MoO4)2:Eu3+ microarchitectures were successfully synthesized by a glycine-assisted hydrothermal method at 180 °C. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HRTEM) were employed to characterize the as-obtained products. It was found that morphology modulation could be easily realized by changing the time of hydrothermal reaction system. 3D flower-like NaY(MoO4)2:Eu3+ microarchitectures were formed with 72 h reaction time. The formation mechanism for flower-like architecture was proposed on the basis of a series of time-dependent experiments. The NaY(MoO4)2:Eu3+ powders obtained can be effectively excited by 396 nm light, and exhibit strong red emission around 615 nm, attributed to the Eu3+5D→ 7F2 transition. An investigation on the photoluminescence (PL) properties of NaY(MoO4)2:Eu3+ obtained revealed that the luminescence properties were correlated with the morphology and size.  相似文献   

7.
In this paper, sphere-like kesterite Cu2ZnSnS4 (CZTS) nanoparticles were successfully synthesized by a facile solvothermal method. The CZTS nanoparticles with diameter range of 100-150 nm were agglomerated by CZTS nanocrystals. The as-obtained CZTS nanoparticles were characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission election microscopy (TEM), Energy Dispersive Spectrometry (EDS) and UV-vis spectroscopy. Texture structures with kesterite crystallinity were reflected from the X-ray diffraction of 112, 200 and 312 planes of the CZTS nanoparticles. The UV-vis absorption spectra showed that CZTS nanoparticles had strong absorption in the visible light region. The observed band gap of 1.48 eV matched well with the bulk CZTS material that was optimal for solar cells.  相似文献   

8.
The Ag/calcium silicate nanocomposite with core-shell nanostructure has been successfully synthesized using Ag solution, Ca(NO3)2·4H2O and Na2SiO3·9H2O in ethanol/water mixed solvents at room temperature for 48 h. Ag solution was previously prepared by microwave-assisted method in ethylene glycol (EG) at 150 °C for 10 min. The nanocomposites consisted of Ag core and an amorphous calcium silicate shell. The XRD and EDS results confirmed that the product was the Ag/calcium silicate nanocomposite. The TEM micrographs indicated that the Ag/calcium silicate nanocomposite was core-shell nanoparticles. The effects of Ca(NO3)2·4H2O and Na2SiO3·9H2O concentration on the shells of Ag/calcium silicate nanocomposite were investigated. The products were characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), and energy-dispersive X-ray spectra (EDS). This method is simple, fast and may be extended to the synthesis of the other kinds of core-shell nanocomposites.  相似文献   

9.
CuSn(OH)6 submicrospheres with a diameter of 400-900 nm, which are composed of nanoparticles with a size of about 27.8 nm, have been successfully synthesized for the first time via a simple liquid approach at room temperature in 15 min. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) were used to characterize the products. Standard magnetization measurements at low temperature reveal that the as-obtained CuSn(OH)6 submicrospheres are antiferromagnetic and have a weak spin-Peierls transition at about 78 K.  相似文献   

10.
Hao Wei  Wei Guo  Zhi Yang 《Materials Letters》2010,64(13):1424-8492
Cu2ZnSnSe4 (CZTSe) is one of promising materials in the use of absorber layers of solar cells. It contains earth-abundant elements of zinc and tin, a near-optimal direct band gap of ∼ 1.5 eV, as well as a large absorption coefficient ∼ 104 cm-1. The CZTSe nanocrystals in oleylamine (OLA) was successfully prepared via hot-injection method. The characterization of its structure, composition, morphology and absorption spectra were done using powder X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM) and UV-vis absorption spectra. The results revealed that the monodispersed nanocrystals were single phase polycrystalline within the range of 15-20 nm. Optical measurements showed a direct band gap of 1.52 eV, which was optimal for low cost solar cells. The capping property of OLA was also demonstrated by examining Fourier Transform Infrared Spectroscopy (FTIR) feature peaks of CZTSe and OLA, respectively.  相似文献   

11.
M.A. Gabal 《Materials Letters》2010,64(17):1887-4867
CuFe2  xCrxO4 (0 ≤ x ≤ 1) nanopowders were successfully synthesized by a simple method using metal nitrates and freshly extracted egg white. The resultant powders annealed at 550 °C for 2 h and were investigated by X-ray diffractometer (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR) and vibrating sample magnetometer (VSM). The results revealed the formation of cubic spinel structure at Cr concentrations ≥ 0.2. In spite of the lattice constant is hardly changed with increasing of Cr content, the magnetic properties of Cr-substituted copper ferrite are strongly affected. The saturation magnetization, remanent magnetization, and coercive force were found to decrease monotonously with increasing of Cr content.  相似文献   

12.
Flower-like NiFe2O4 superstructures consisting of nanosheets have been successfully synthesized by direct thermolysis of a heterometallic oxo-centered trinuclear complex [NiFe2O(CH3COO)6(H2O)3·2H2O] (NiFe-HOTC) at 400 °C for 6 h in a horizontal tube furnace. The composition and structure of the products were investigated by X-ray diffraction (XRD) and infrared spectra (IR). XRD analysis revealed a pure ferrite phase with high crystallinity. Morphological investigation by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) showed NiFe2O4 flowers with average diameter varying from 0.5 to 3 μm consist of nanosheets with average edge length in the range of 60-300 nm and thickness of about 30 nm. Furthermore, energy dispersive X-ray analysis (EDX) demonstrated that the atom ration of Ni, Fe and O is 1:2:4. In addition, magnetic measurements showed that the obtained flower-like NiFe2O4 are ferromagnetic at room temperature.  相似文献   

13.
Monodisperse hexagonal TbPO4·nH2O hollow spheres were successfully obtained by utilizing Tb(OH)CO3 colloidal spheres as the precursor and NH4H2PO4 as the phosphorus source through the hydrothermal process. The obtained hollow spheres were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), respectively. They have the average diameter of 200 nm. There are a number of tiny nanorods with the length of about 60 nm on the surface of the spheres. The obtained TbPO4 hollow spheres exhibit green color emission from 5D4 − 7FJ (J = 6, 5, 4, 3) transitions of the Tb3+ ions, which are expected to be applied in display applications and biological applications.  相似文献   

14.
Co3O4-RuO2 composite nanofibers (NFs) were synthesized by an electrospinning method and were calcinated at 400°C for 1 hr in air. Scanning electron microscopy and high-resolution transmission electron microscopy (HRTEM) examinations show that all the synthesized NFs have uniform surface morphology and their diameters are in the range of ~ 30-~70 nm. X-ray diffraction (XRD) results show that crystalline Co3O4 phase and RuO2 phase coexist in the composite NF matrix which is confirmed by X-ray photoemission spectroscopy. In addition, the HRTEM energy-dispersive X-ray spectroscopy mapping results show that the Co3O4 and RuO2 phases are uniformly distributed across the NF matrix.  相似文献   

15.
In order to prepare the pure (K, Na)NbO3(KNN) particles with higher crystallinity, the high temperature mixing method (HTMM) under hydrothermal conditions was carried out in this work. The obtained samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), and high-resolution transmission electron microscopy (HRTEM). The results indicate that the KNN particles size decrease gradually with the increase of mineralization concentration in the starting solution. The ratio of K+/(K+ + Na+) in the starting solution has a great effect on the phase of the products, and several phases coexist in the product when the ratio of K+/(K+ + Na+) in the starting solution is 0.7.  相似文献   

16.
In this paper, a modified sol-gel method was employed to prepare nanostructured MgAl2O4 spinel powders doped with Tb3+ ions and thermally treated at 700 and 1000 °C for 3 h. The structural properties of the prepared at 700 and 1000 °C powders where characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). According to obtained XRD patterns the formation of single-phase spinels after calcination was confirmed. The XRD analyses demonstrated that the powders were single-phase spinel nanopowders with high crystallite dispersion. The Rietveld method was applied to calculate lattice parameters. The averaged spinel particle size was determined to be ∼10 nm for calcination at 700 °C and ∼20 nm at 1000 °C. The emission and excitation spectra measured at room and low temperature (77 K) for the samples calcined at 700 and 1000 °C demonstrated characteristic spectra of Tb3+ ions. The effect of MgAl2O4:Tb3+ grain sizes on luminescence properties was noticed.  相似文献   

17.
Nanostructures of tungsten trioxide (WO3) have been successfully synthesized by using an aged route at low temperature (60 °C) followed by a hydrothermal method at 200 °C for 48 h under well controlled conditions. The material was studied by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Energy Dispersive Spectroscopy (EDS), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). Specific Surface Area (SBET) were measured by using the BET method. The lengths of the WO3 nanostructures obtained are between 30 and 200 nm and their diameters are from 20 to 70 nm. The growth direction of the tungsten oxide nanostructures was determined along [010] axis with an inter-planar distance of 0.38 nm.  相似文献   

18.
Using zinc naphthenate and titanium tetra isopropoxide (1:1 mol.%) dissolved in ethanol as precursors, single phase Zn2TiO4 nanoparticles were synthesized by the flame spray pyrolysis technique. The Zn2TiO4 nanoparticles were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS). The BET surface area (SSABET) of the nanoparticles was measured by nitrogen adsorption. The average diameter of Zn2TiO4 spherical particles was in the range of 5 to 10 nm under 5/5 (precursor/oxygen) flame conditions. All peaks can be confirmed to correspond to the cubic structure of Zn2TiO4 (JCPDS No. 25-1164). The SEM result showed the presence of agglomerated nanospheres with an average diameter of 10-20 nm. The crystallite sizes of spherical particles were found to be in the range of 5-18 nm from the TEM image. An average BET equivalent particle diameter (dBET) was calculated using the density of Zn2TiO4.  相似文献   

19.
Spherical SiO2 particles have been successfully coated with zinc borate layers through a self-assembly process. The resulted SiO2-Zn5B4O11 core-shell nanospheres were characterized by X-ray diffraction (XRD), infrared spectra (IR), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) equipped with an energy-dispersive X-ray spectrometer (EDS). The obtained SiO2-Zn5B4O11 core-shell nanospheres have perfect spherical shape with narrow size distribution (average diameters 50 nm), i.e., the cores with mean diameters of 40 nm and the shells with an average thickness of 5 nm, monodisperse and smooth surface. Moreover, the friction coefficient of the base oil was decreased by the addition of SiO2-Zn5B4O11 core-shell nanospheres.  相似文献   

20.
A novel tellurium/calcium silicate nanocomposite with tellurium nanorods homogeneously dispersed in the calcium silicate matrix has been successfully synthesized using corresponding tellurium nanorods, Ca(NO3)2·4H2O, and Na2SiO3·9H2O in ethanol/water mixed solvents at room temperature for 48 h. The new material consists of a single crystalline Te core and an amorphous calcium silicate shell. The products were characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED), and energy-dispersive X-ray spectroscopy (EDS). The method is simple and does not need any surfactant or template or base. Cytotoxicity experiments indicated that the tellurium/calcium silicate nanocomposites with a low concentration had good biocompatibility. This nanocomposite is a very promising candidate for the application as bioactive materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号