首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report simultaneous alignment and micropatterning of carbon nanotubes (CNTs) using a high magnetic field. It is important to prepare well-dispersed CNTs for alignment and patterning because CNT aggregation obstructs alignment. In magnetic field, highly anisotropic CNTs rotate in the direction stabilized in energy. Owing to their diamagnetic nature, CNTs suspended in a liquid medium are trapped in a weak magnetic field generated by a field modulator; meanwhile, they align to the applied strong magnetic field. The alignment has been achieved not only in polymers but also in ceramic and silicone composites.  相似文献   

2.
Abstract

We report simultaneous alignment and micropatterning of carbon nanotubes (CNTs) using a high magnetic field. It is important to prepare well-dispersed CNTs for alignment and patterning because CNT aggregation obstructs alignment. In magnetic field, highly anisotropic CNTs rotate in the direction stabilized in energy. Owing to their diamagnetic nature, CNTs suspended in a liquid medium are trapped in a weak magnetic field generated by a field modulator; meanwhile, they align to the applied strong magnetic field. The alignment has been achieved not only in polymers but also in ceramic and silicone composites.  相似文献   

3.
The goal of this work is to study the effect of high magnetic pulses on electrical property of carbon nanotube–polypyrrole (CNT–PPy) composites with different CNT concentrations. CNT–PPy composites are produced in fractions of 1, 5 and 9 wt%. During the polymerization process, the CNTs are homogeneously dispersed throughout the polymer matrix in an ultrasonic bath. Nanocomposite rods are prepared. After exposure to 30 magnetic pulses, the resistivity of the rods is measured. The surface conductivity of thin tablets of composites is studied by 4-probe technique. The magnitude of the pulsed magnetic field is 10 Tesla with time duration of 1.5 ms. The results show that after applying 30 magnetic pulses, the electrical resistivity of the composites decreases depending on the concentration of CNTs in the composites. The orientation of CNTs is probed by atomic force microscopy (AFM) technique. AFM images approved alignment of CNT–polymer fibres in the magnetic field. We found that the enhancement in the electrical properties of CNT–PPy composites is due to rearrangement and alignment of CNTs in a high magnetic field. The stability of nano-composites is studied by Fourier transform infrared spectroscopy.  相似文献   

4.
This paper proposes the correlation between the electrokinetic potential, dispersibility in solvents, surface energy and oxygen content of carbon nanotubes (CNTs) affected by functionalization. Colloidal systems consisting of CNTs with varying degrees of dispersion are prepared and characterized to evaluate CNT dispersibility and suspension stability in solvents with different polarities. The results show that an absolute value of zeta potential at about 25 mV is closely related to the micro- and macroscopic dispersion of CNTs, whereas a high absolute value of 40 mV is regarded as an indication of high quality CNT dispersion with much enhanced suspension stability in solvents. The absolute zeta potential value increases consistently with increasing degree of CNT functionality, the increase being most pronounced in a hydrophilic liquid such as water. A linear correlation is established between the surface energy of a CNT film and the oxygen to carbon ratio of CNT surface. The CNT dispersibility in a liquid is determined not only by their physical states, but also by the hydrophilicity and surface functionality of CNTs, all of which are reflected by zeta potential.  相似文献   

5.
采用超声分散磁场下原位聚合的方法制备了聚(甲基丙烯酸甲酯-丙烯酸丁酯)/碳纳米管/羰基铁粉电致形状记忆磁性复合材料。采用扫描电镜(SEM)、红外热像仪和电学性能测试等方法实验表征了材料的结构与性能。结果表明,在磁场下原位聚合可使羰基铁粉沿磁场方向取向,赋予材料各向异性的导电性能和磁响应性。超声辐照能使碳纳米管均匀分散在...  相似文献   

6.
In this study, two types of multi-walled carbon nanotubes (pristine, p-CNT and functionalized, f-CNT) were dispersed in water by sonication and then added to cement mortar. The purpose of this study was to characterize the dispersion degree of the CNTs in aqueous suspension and to investigate whether achieving dispersion in water would also result in dispersion inside mortar. Dispersion of the CNTs in water was investigated by means of UV–vis spectroscopy, using different CNT concentrations and sonication durations. Dispersion of the CNTs in cement mortar was investigated by measuring the compressive and flexural strength and fracture toughness as well as the microstructural characterizations of scanning electron microscopy and mercury intrusion porosimetry. The effects of the CNT addition on drying shrinkage and cement hydration were also investigated for cement pastes. The results of UV–vis spectroscopy showed that by increasing the sonication time to 120 min, the dispersion degree of the f-CNT suspension increased progressively, while for p-CNT, a maximum was reached with 60 min of sonication. The compressive and flexural strength and fracture toughness of mortars containing f- and p-CNTs were not significantly improved either by increasing the amount of CNT or imposing sonication in mixing water. High CNT dispersion in cement matrix was not equally obtained by utilizing highly dispersed CNT suspension. Sonication of f- and p-CNT led to a remarkable deceleration of cement hydration in the first hour of hydration and drying shrinkage of the cement composites was found to be reduced by f- and p-CNT addition.  相似文献   

7.
Yan YH  Li S  Chen LQ  Chan-Park MB  Zhang Q 《Nanotechnology》2006,17(22):5696-5701
Single-walled carbon nanotube (CNT) arrays have been assembled on various substrates over mm-scale surface areas by combining fluidic alignment with soft lithography (micropatterning in capillaries) techniques. The feature size of the nanotube patterns reaches down to submicrometre scale. To this end, tailored substrate surface modification and pre-alignment of chopped CNTs in suspension are highly critical.  相似文献   

8.
Al2O3 ceramic reinforced with 4-wt% multiwalled carbon nanotube (CNT) is plasma sprayed for improving the fracture toughness of the nanocomposite coating. Two different methodologies of CNT addition have been adopted in the powder feedstock to assist CNT dispersion in the nano-Al2O3 matrix. First, spray-dried nano-Al2O3 agglomerates are blended with 4 wt% CNT as powder-feedstock, which is subsequently plasma sprayed resulting in the fracture toughness improvement of 19.9%. Secondly, spray dried composite nano-Al2O3 and 4 wt% CNT powder was used as feedstock for attaining improved dispersion of CNTs. Plasma sprayed coating of composite spray dried powder resulted in increase of 42.9% in the fracture toughness. Coating synthesized from the blended powder displayed impact alignment of CNTs along splat interface, and CNTs chain loop structure anchoring the fused Al2O3 melt whereas coating synthesized from composite spray dried powder evinced anchoring of CNTs in the solid state sintered region and CNT mesh formation. Enhanced fracture toughness is attributed to significance of CNT dispersion.  相似文献   

9.
We use dielectrophoresis (DEP) to controllably and simultaneously assemble multiple carbon nanotube (CNT) networks at the wafer level. By an appropriate choice of electrode dimensions and geometry, an electric field is generated that captures CNTs from a sizable volume of suspension, resulting in good CNT network uniformity and alignment. During the DEP process, the electrical characteristics of the CNT network are measured and correlated with the network morphology. These experiments give novel insight into the physics of DEP assembly of CNT networks, and demonstrate the scalability of DEP for future device applications.  相似文献   

10.
Kim DH  Cho DS  Jang HS  Kim CD  Lee HR 《Nanotechnology》2003,14(12):1269-1271
Regular arrays of freestanding single carbon nanotubes (CNTs) were prepared on Ni dot arrays by dc plasma-enhanced chemical vapour deposition. The size of the Ni dot was reduced for single CNT growth by means of conventional photolithography and a lateral wet-etch process. The vertical alignment of a single CNT was directly dependent on the location of the catalyst metals. Using this method, well-separated and well-defined regular arrays of freestanding CNTs can be fabricated and the process can be scaled up at a lower cost than electron beam lithography, which is encouraging for applications in field emitters and nanoelectrodes.  相似文献   

11.
Homogeneous dispersion of metal oxide nanoparticles was achieved on carbon nanotubes (CNTs) even with a very small amount of surface oxygen functional groups (SOFGs) aided by using ethylene glycol (EG) and sodium hydroxide during the process. Similar particle size distributions were obtained for iron deposited on CNTs containing various amounts of SOFGs. We proposed that formation of hydrogen bonds between EG on the CNT surface and sodium hydroxide is likely responsible, which creates precipitating sites for iron ions on the CNT surface. This facile method is expected to find applications not only for catalysis but also in the fields such as sensors and magnetic materials in particular where a perfect sp2 hybridized carbon structure is preferred.  相似文献   

12.
Molecular dynamics simulations are used to compute the potential of mean force (PMF) governing the interactions between carbon nanotubes (CNTs) in water/surfactant systems. The effects of CNT length, diameter, chirality (armchair and zigzag) and surfactant structures on CNT interaction and dispersion in water/surfactant systems are investigated for (5, 5), (5, 0), and (10, 10) single walled CNTs with two commonly used surfactants [viz., sodium dodecyl sulfate (SDS) and sodium dodecylbenzene sulfonate (SDBS)] at room conditions. An adaptive biasing force method was used to speed up the calculations. Simulations revealed that CNT length and diameter as well as optimum amount of surfactant addition and its structures can significantly affect CNT interactions (i.e., PMFs vary significantly). Surfactant molecules were found to adsorb at the CNT surface and reduced interaction strength between CNTs. SDBS surfactant contributed weaker interactions between CNTs as compared with that of SDS surfactant by a factor of about 10 indicating that SDBS is better than SDS for dispersing CNTs in an aqueous suspension. This phenomenon agrees qualitatively with the experimental results reported in the literature. The understanding of detailed atomic arrangements and atomic interactions between CNTs and surrounding molecules reported in this study is significantly helpful to computationally screening different surfactants and improving the CNT dispersion in aqueous solution. The method will also facilitate the reduction of time and cost required to produce CNT reinforced nanocomposite materials as well as homogeneous CNT dispersed solutions for many biological applications.  相似文献   

13.
The main properties of epoxy composites reinforced with aligned carbon nanotubes (CNTs) have been studied. The alignment was carried out in a specific designed device applying a weak magnetic field (0.3 T) with permanent magnets. CNTs were modified with magnetite nanoparticles (Fe3O4) functionalized, in a one-stage-process which does not require use of strong acids or aggressive treatments which could affect the structural integrity of CNTs. The study by transmission electron microscopy confirmed that the Fe3O4 nanoparticles were closely bonded over CNT surfaces. The thermo-mechanical and tensile properties of composites measured were higher than neat epoxy resin and were similar for both composites: reinforced with neat CNTs and magnetite–CNT hybrid nanofillers. The electrical behaviour indicates a high anisotropy for aligned composites, showing an increase of one order of magnitude for the electrical conductivity in the direction of aligned nanotubes.  相似文献   

14.
Jinzhi Liao  Ming-Jen Tan 《Materials Letters》2011,65(17-18):2742-2744
In carbon nanotube (CNT) reinforced metal matrix composites (MMCs), the good dispersion of CNTs in the matrix as well as the processing problems are the major challenges inhibiting the development of these composites. In this study, well-dispersed CNTs reinforced aluminum (Al) matrix nanocomposite was fabricated by a novel Spread–Dispersion (SD) method. Specimens with ultra-fine grain size down to 20 nm were obtained. The tensile strength of the CNT nanocomposite was 66% greater than the base matrix with a minor decrease in ductility. Such enhancement was analyzed on the basis of segregation and uniform distribution of clustered CNTs, disappearance of the CNT-free zones, eliminated porosity, stronger Al/CNT bonding and the retention of CNT graphitic structure.  相似文献   

15.
Huan-Bin Lian  Kuei-Yi Lee 《Vacuum》2009,84(5):534-536
Zinc oxide (ZnO) nanostructures were grown on vertically aligned carbon nanotubes (CNTs) using thermal chemical vapor deposition (CVD) to enhance the field emission characteristics. The shape of ZnO nanostructure was tapered. Scanning electron microscopy (SEM) image showed the ZnO nanostructures were grown onto CNT surface uniformly. The field electron emission of pristine CNTs and ZnO-coated CNTs were measured. The results showed that ZnO nanostructures grown onto CNTs could improve the field emission characteristics. The ZnO-coated CNTs had a threshold electric field at about 3.1 V/μm at 1.0 mA/cm2. The results demonstrated that the ZnO-coated CNT is an ideal field emitter candidate material. The stability of the field emission current was also tested.  相似文献   

16.
Carbon nanotubes (CNTs) were incorporated into polystyrene (PS) and poly(methyl methacrylate) (PMMA) matrices via in situ emulsion and emulsion/suspension polymerization methods. The polymerizations were carried out using various initiators, surfactants, and carbon nanotubes to determine their influence on polymerization and on the properties of the composites. The loading of CNTs in the composites varied from 0 to 15 wt.%, depending on the CNTs used. Morphology and dispersion of the CNTs were analyzed by transmission and scanning electron microscopy techniques. The dispersion of multi-walled carbon nanotubes (MWCNT) in the composites was excellent, even at high CNT loading. The mechanical properties, and electrical and thermal conductivities, of the composites were also analyzed. Both electrical and thermal conductivities were improved.  相似文献   

17.
A new method to realize the uniform coating of carbon nanotubes (CNTs) to carbon fibers (CFs) has been developed, which enables the scalable fabrication of CNT containing CF/epoxy composites. In this method, CNTs are treated by cationic polymers, then, the CNTs are coated to CFs by immersion into a CNT/water suspension. Good dispersion is achieved by repulsive force between positively charged CNTs and uniform coating of the CNTs is achieved by attractive forces between positively charged CNTs and negatively charged CFs. It is found that the use of specific cationic polymers including polyethyleneimine (PEI) results in stable CNT/water suspensions, and uniform coating of the CNTs. Single fiber fragmentation tests of the CF/epoxy composites were conducted to evaluate the strength of interface and interphase under shear loading. The results show that the combination of epoxy resin sizing and PEI treated CNT coating to CFs results in high interfacial shear strength.  相似文献   

18.
提高碳纳米管(CNTs)在聚合物基体中排列的有序性,对推动聚合物/碳纳米管(CNT)纳米复合材料的研究、应用和发展具有重要的意义.本文从离位(exo-situ)有序排列、力场取向、磁场取向和静电纺纱技术等方面,综述了提高CNTs在聚合物基体中有序排列方法的最新研究进展。  相似文献   

19.
The polyurethane (PU) nanocomposites containing carbon nanotubes (CNTs) were prepared through in situ polymerization for the creep study. The results show that the presence of CNTs leads to a significant improvement of creep resistance of PU. However, this creep resistance does not increase monotonously with increase of CNT contents because it is highly dependent on the dispersion of CNTs. Several theoretical models were then used to establish the relations between CNT dispersion and final creep and creep–recovery behaviors of nanocomposites. The as-obtained viscoelastic and viscoplastic parameters of PU matrix and structural parameters of CNTs further confirmed the retardation effect by CNTs during creep of the nanocomposite systems. Besides, the time–temperature superposition (TTS) principle was also employed in this work to make a further evaluation on the creep of PU/CNT nanocomposites with long-term time scale.  相似文献   

20.
Thermal conductivity of CNT/polymer composites depends on alignment, dispersion, volume fraction and size of CNTs as well as polymer size. By coupling smoothed particle hydrodynamics and dissipative particle dynamics, thermal conductivities of random and aligned composites along with their meso morphologies are studied in detail. Thermal conductivity along the alignment of CNT can be significantly enhanced to 16 times that of polymer by increasing volume fraction, dispersion degree and length of CNT, meanwhile thermal conductivity perpendicular to the alignment of CNT is affected modestly by these factors. Enhancement of thermal conductivity of random composites could only be efficiently achieved by increasing the volume fraction of CNT. Particularly, thermal conductivity κ is proportional to the square of volume fraction of CNT v in well dispersed random and aligned composites, i.e. κv2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号