首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A nano-structured mesoporous yttria-stabilized zirconia (YSZ) powders were prepared for the first time using cetyltrimethylammonium bromide (CTAB) as the surfactant and urea as the hydrolyzing agent and using ZrO(NO3)·6H2O and Y(NO3)3·6H2O as inorganic precursors. The Brunauer–Emmett–Teller (BET) surface area, Barrett–Joyner–Halender (BJH) pore size distribution and crystallite/particle size of mesoporous YSZ varied with calcine temperatures were studied. Characterizations revealed that the mesoporous YSZ powder calcined at 600 °C was weakly agglomerated and had a high surface area of 137 m2/g with an average grain size of ∼5.8 nm. It was demonstrated that the mesoporous structure remained up to 900 °C. The low-densified YSZ sample with porosity as high as 33% was prepared from mesoporous YSZ powder sintered at 1500 °C for 6 h.  相似文献   

2.
A novel strategy involving the combination of soft-templating and solid–liquid method (CSSL) is presented to synthesize mesoporous nanocrystalline zirconia with high specific surface area, that is, the mesostructured zirconia hybrid is firstly synthesized via cooperative assembly between zirconium sulphate as inorganic precursor and 1-hexadecyl-3-methylimidazolium bromide (C16mim+Br) as the structure-directing agent, and subsequently ground with solid magnesium nitrate salt followed by heat-treatment in air. The resulting zirconia material after calcination at 600 °C possesses a wormlike arrangement of mesopores surrounded by tetragonal ZrO2 nanocrystallites of ca. 2.3 nm. The BET surface area is 255 m2/g and the pore size is ca. 4.3 nm. However, no mesoporous structure exists in the obtained zirconia material via the simple soft-templating method at the same calcination temperature. Photoluminescence (PL) spectra of the obtained mesoporous nanocrystalline ZrO2 show a strong emission peak at ca. 394 nm under UV excitation of 250 nm wavelength.  相似文献   

3.
In this study, boron doped and undoped poly (vinyl) alcohol/bismuth–gadolina acetate (PVA/Bi–Gd) nanofibers were prepared using electrospinning technique then calcinated at 800 °C for 2 h. The originality of this study is the addition of boron to metal acetates. The effects of boron doping were investigated in terms of solution properties, morphological changes and thermal characteristics. The characteristics of the fibers were investigated with FT-IR, XRD, SEM and BET. The addition of boron did not only increase the thermal stability of the fibers, but also their diameters, which yielded stronger fibers. XRD analyses showed that boron doping increased the peak intensities and indicated that the boron doping enhanced the crystallite size. Moreover, no shifts were noticed in diffraction angles for boron doped and undoped samples. Therefore, boron doping did not significantly alter the lattice spacing. The SEM micrograph of the fibers showed that the addition of boron resulted in the formation of cross-linked bright-surfaced fibers. The average fiber diameter for boron doped and undoped fiber mats were 204 and 123 nm, respectively. Also, grain diameters of boron doped and undoped nanocrystalline sintered powders were measured as 140 and 118 nm, respectively. The BET results showed that boron undoped and doped Bi2O3–La2O3 nanocrystalline powder ceramic structures sintered at 800 °C have surface areas of 59.72 and 39.80 m2/g, respectively.  相似文献   

4.
We report on the thermally induced changes of the nano-structural and optical properties of hydrogenated nanocrystalline silicon in the temperature range 200–700 °C. The as-deposited sample has a high crystalline volume fraction of 53% with an average crystallite size of ~3.9 nm, where 66% of the total hydrogen is bonded as ≡Si–H monohydrides on the nano-crystallite surface. A growth in the native crystallite size and crystalline volume fraction occurs at annealing temperatures ≥400 °C, where hydrogen is initially removed from the crystallite grain boundaries followed by its removal from the amorphous network. The nucleation of smaller nano-crystallites at higher temperatures accounts for the enhanced porous structure and the increase in the optical band gap and average gap.  相似文献   

5.
Hydrogel/PZT composite was prepared by encapsulating, Pb(Zr0.52Ti0.48)O3 (PZT) nanoparticles in an electroactive (PVA–PAA) hydrogel. The XRD studies confirmed the presence of pure tetragonal phase in PZT with crystallite size of 13 nm in the composite matrix. PZT nanoparticles were found to be embedded in the micro pores of PVA–PAA hydrogel as indicated by the SEM images. The composite shows three step degradation process in the TG/DTA measurements. Dielectric properties were studied from room temperature to 120 °C within wide frequency range of 100 Hz–600 kHz. At room temperature and intermediate frequency range, the composite shows a high dielectric constant of ~225 to 600 and low dielectric loss of 0.08.  相似文献   

6.
A modified catecholate process has been applied to synthesize high purity barium titanate powders in the submicron range. A barium titanium-catechol complex, Ba[Ti(C6H4O2)3] was prepared from TiCl4, C6H4(OH)2 and BaCO3, freeze-dried, and calcined for 3 h at temperatures between 600 and 1300 °C. Phase transformation and crystallite size of the calcined powders were investigated as a function of the calcination temperature by X-ray diffraction methods, and particle morphology and size were studied by scanning electron microscopy. With increasing calcination temperature, BaTiO3 transformed from the (pseudo)cubic to the ferroelectric tetragonal phase. The tetragonality (c/a-1) increases with increasing calcination temperature and increasing crystallite size, respectively. Higher temperatures clearly favoured particle growth and the formation of large and hard agglomerates. The crystallite size of the tetragonal phase increased from <60 nm at 600–800 °C to 1237±344 nm at 1300 °C.  相似文献   

7.
In this research a sol–gel combustion route has been presented to synthesize strontium titanate (SrTiO3:ST) nanocrystalline, using citric acid as fuel. The synthesis procedure was optimized by systematically varying the molar ratios of total metal nitrate to citric acid (MN:CA) from 1:1 to 1:3. The effect was investigated through XRD, SEM and TEM analysis. Analysis of XRD spectrum shows the complete of SrTiO3 nanocrystalline, however, a minor phase of SrCO3 impurity was found. Hence, an acid treatment process, with 1 mol/l HNO3 solution and deionized water, was applied to remove the impurity. The results show that the appropriate condition to prepare the single phase nanocrystalline SrTiO3 powders is MN:CA molar ratio of 1:3, coupled with an acid treatment process and at the lower calcination temperature of 500 °C. The particle size of powders was in nanometer ranges. The average crystallite size calculated from FWHM was about 23 nm. Morphology of powders was identified by SEM analysis. However, TEM estimated the average particle size about 7.5 nm after applying an acid treatment technique at 600 °C.  相似文献   

8.
Thin films with the composition 70 mol% Na0.5Bi0.5TiO3 + 30 mol% NaTaO3 were prepared by sol–gel synthesis and spin coating. The influence of the annealing temperature on the microstructural development and its further influence on the dielectric properties in the low‐ (kHz–MHz) and microwave‐frequency (15 GHz) ranges were investigated. In the low‐frequency range we observed that with an increasing annealing temperature from 550°C to 650°C the average grain size increased from 90 to 170 nm, which led to an increase in the dielectric permittivity from 130 to 240. The temperature‐stable dielectric properties were measured for thin films annealed at 650°C in the temperature range between ?25°C and 150°C. The thin films deposited on corundum substrates had a lower average grain size than those on Si/SiO2/TiO2/Pt substrates. The highest average grain size of 130 nm was obtained for a thin film annealed at 600°C, which displayed a dielectric permittivity of 130, measured at 15 GHz.  相似文献   

9.
Ordered hexagonal mesoporous TiO2 thin film was prepared by the evaporation-induced self-assembly (EISA) method using triblock copolymer (Pluronic P123) and tetrabutyl orthotitanate (Ti(OBu n )4, TBOT) in 1-methoxy-2-propanol (C4H10O2, PGME) solvent. The arrangement of mesopores was identified by small-angle X-ray diffraction and transmission electron microscopy (TEM). The well-ordered hexagonal mesoporous TiO2 had a high specific surface area of 239 m2/g and an average pore size of 6.3 nm. The structure of mesoporous TiO2 thin film was anatase with a 5.1 nm crystallite. The absorption band shift of the mesoporous TiO2 toward longer wavelengths as calcined at 350 °C due to the residual carbon.  相似文献   

10.
A technically simple chemical method for the synthesis of mesoporous γ-alumina has been reported. Mesoporous γ-aluminas with different pore structure and surface area were synthesized by using aluminium nitrate as a source of aluminum. Supramolecular liquid crystalline phase of acid soap template synthesized via reaction of different carboxylic acids (stearic acid, oliec acid and lactic acid) with excess of triethanolamine (TEA) acts as a structure directing agent and water was used as solvent. Precursors were calcined at 550 °C in air for 2 h to obtain mesoporous alumina powders. Synthesized γ-alumina powders were characterized by using thermogravimetric analysis, X-ray diffraction, high resolution transmission electron microscope and N2 adsorption–desorption surface area and pore size analyzer. Pore size and ordering of pores were influenced by the chain length of carboxylic acids. Surface area of synthesized alumina powders varied from 214 to 376 m2/g and average pore diameter from 3.3 to 6.5 nm depending upon the chain length of the carboxylic acid.  相似文献   

11.
Nanosized (2–8 nm) amorphous powders of the solid solution based on zirconia and hafnia are synthesized through back coprecipitation upon treatment of gels at temperatures from +20 to −77°C. Heat treatment of these powders at temperatures up to 1000 and above 1100°C leads to the formation of cubic (fluorite type, O h 5 = Fm3m) and tetragonal phases of the Zr82Hf10Y3Ce5O x composition, respectively. It is revealed that a decrease in the synthesis temperature (from +20°C to −6°C) results in a decrease in the size of gel agglomerates from 30 to 1 μm. Recrystallization processes in the gels prepared using cryochemical treatment are developed very slowly in the temperature range 500–1200°C (the crystallite size does not exceed 25 nm). Original Russian Text ? T.I. Panova, V.B. Glushkova, A.E. Lapshin, 2008, published in Fizika i Khimiya Stekla.  相似文献   

12.
Boron doped poly(vinyl) alcohol/ bismuth - lanthanum acetate (PVA/Bi-La) nanofibers were prepared by electrospinning using PVA as a precursor. The effect of boron doping was investigated in terms of solution properties, morphological changes and thermal characteristics. The fibers were characterized by FT-IR, XRD, SEM and BET. The addition of boron did not only increase the thermal stability of the fibers, but also their diameters, which yielded stronger fibers. XRD analyses showed that boron doping increased the peak intensities and indicated that the boron doping enhanced the crystallite size. Moreover, no shifts were noticed in diffraction angles for boron doped and undoped samples. Therefore, boron doping did not significantly alter the lattice spacing. The SEM micrograph of the fibers showed that the addition of boron resulted in the formation of cross linked bright surfaced fibers. Also, grain diameters of boron doped and undoped nanocrystalline sintered powders were measured as 170 nm and 120 nm respectively. The BET results show that boron undoped and doped Bi2O3-La2O3 nanocrystalline powder ceramic structures sintered at 800 °C have surface areas of 20.44 m2/g and 12.93 m2/g, respectively.  相似文献   

13.
Magnesium aluminate spinel oxides have been prepared via poly(N-isopropylacrylamide) assisted microwave technique. The prepared MgAl2O4 powders showed a crystalline cubic structure with spinel phase after calcination at 600 °C only. The poly(N-isopropylacrylamide) amount showed a high effect on the crystallite size and the densification behavior of MgAl2O4. The increase of the amount of poly(N-isopropylacrylamide) reduced the sintering temperature of MgAl2O4 from 1400 °C to 1050 °C. The hot-pressed of MgAl2O4 powders in the presence of 3 wt% of poly(N-isopropylacrylamide) exhibited a full density at sintering temperature 1100 °C in 15 min only. The sintered films showed high transparency (81 ± 2%) in the wavelength range 500–1000 nm.  相似文献   

14.
Manganese-doped zinc aluminate spinel (ZnAl2O4:Mn; Mn=0–6.0 mol%) phosphor nanoparticles were prepared by the sol–gel process. The effects of thermal annealing and dopant concentration on the structure, microstructure and luminescence of the powder phosphors were investigated. The X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) results confirmed that a single-phase spinel started to crystallize at around 600 °C for the investigated powders. On heating at 600–1200 °C, the powders had the average crystallite sizes of around 12–33 nm. The crystallite size and lattice constant increased as the doping level of Mn increased. FT-IR spectra exhibited only absorption bands of the AlO6 octahedral groups, which suggested that the powder phosphors mainly crystallized in a normal spinel structure. Scanning electron microscopy (SEM) investigations showed the primary particle sizes were around 20–25 nm for the powders annealed at 1000 °C, and less than ca. 50 nm for those annealed at 1200 °C. Photoluminescence (PL) spectra under UV or visible light excitation exhibited a strong green emission band centered at 510 nm, corresponding to the typical 4T1(4G)—6A1(6S) transition of tetrahedral Mn2+ ions. The most intense PL emission was obtained by exciting at 458 nm. The PL intensity was significantly enhanced by the improved crystallinity and diminished OH? groups. Optimum brightness occurred at a doping of 3.0 mol% Mn.  相似文献   

15.
A supercritical fluid process method has been developed for fabricating mesoporous zirconia thin films with enhanced thermal stability up to a temperature of 850 °C. Both the supercritical CO2 and the precursor tetramethoxysilane play an important role in enhancing the thermal stability of these films. Powder X-ray diffraction, Atomic force microscope, spectroscopic ellipsometry and transmission electron microscope analyses show that the thin films fabricated by the supercritical fluid process method have a highly ordered mesoporous structure, a nanocrystalline inorganic framework and a high optical transparency. These zirconia thin films have potential applications as electrodes in solid oxide fuel cells where high thermal stability is essential.  相似文献   

16.
Mesoporous silica-pillared montmorillonites (SPMs) were prepared based on cation-exchange, gallery-templated synthesis method, and the post-synthesis treatment using ammonia, and characterized by powder X-ray diffraction (PXRD), thermogravimetric analysis (TGA), and N2 adsorption–desorption. The results showed that ammonia played a very important role in the formation of the mesoporous materials; the calcined SPMs indicated a BET surface area of 511 m2/g and average pore size of 3.1 nm by adjusting the ammonia treating temperature at 110 °C. The formation of SPMs was discussed and its progressing mechanism was suggested.  相似文献   

17.
Catalytic oxidation of carbon monoxide (CO) gas over nanosized nickel ferrites prepared from fly ash has been investigated. X-ray diffraction analyses showed that pure crystalline nickel ferrite, NiFe2O4, phase can be obtained by thermal treatment of the precursors at temperature >800 °C for 120 min in the studied pH range, from 7 (neutral) to 12 (highly alkaline). In the temperature range 500 ≤ T ≤ 800 °C, impure low crystalline NiFe2O4 phase formed. The main impurities are FeO (OH) and Fe2O3 · H2O phases. Higher magnetization (32 emu/g) is obtained for a precursor precipitated at pH 10 and thermally treated at 1,200 °C for 120 min. The catalytic oxidation of CO over nanocrystalline NiFe2O4 powders was studied using quadrupole mass gas analyzer system. The main parameters as crystal size, surface area and firing temperature are used to clarify the efficiency of using NiFe2O4 powders in catalytic oxidation of CO. It was found that the efficiency of catalytic oxidation decreased by increasing firing temperature and crystallite size of the samples. The lower crystal size (2–8.5 nm), the higher surface area (25–55 m2/g) and the presence of impurities FeO(OH) phase enhanced CO adsorption and consequently its oxidation.  相似文献   

18.
The synthesis of early transition nanocrystals using NaBH4 and the respective metal oxides at atmospheric pressure was studied at temperatures between 400 and 1000°C. Reaction products were analyzed by x‐ray diffraction, the crystallite size was determined after Rietveld refinement of diffraction patterns, while the morphology was analyzed by scanning and transmission electron microscopy. For all the investigated systems the lowest temperature to complete the synthesis was 700°C and the reaction occurred in three subsequent steps: (i) decomposition of NaBH4, (ii) formation of crystalline ternary species Na–M–O and Na–B–O, (iii) conversion of intermediary species to MB2 and NaBO2. Syntheses carried out at T > 700°C only caused coarsening of the powders. The synthetized boride powders had the morphology of highly agglomerated nanocrystals. TiB2 had a specific surface area of 33.5 m2/g and crystallite diameter of 12 nm. Both ZrB2 and HfB2 had a platelet‐like morphology with crystallite diameter around 45 nm and specific surface area of 25.0 and 36.4 m2/g, respectively. Finally, NbB2 and TaB2 powders had a crystallite diameter around 5 nm with specific surface area of 21.1 and 11.4 m2/g, respectively. The goal of this synthesis is the use of cheap raw materials and moderate temperature conditions.  相似文献   

19.
Isomorphously nickel-substituted nano-crystalline ZSM-5 is synthesized in the absence of acidic aqueous fluoride medium incorporating simple and low-cost metal inorganic salt precursor NiCl2.6H2O instead of large organic cationic salt like bis (tetraethyl ammonium) tetrachloronickelate (II) with less water quantity to minimize the synthesis waste. PXRD, FT-IR, TG/DTG, XPS, UV–Vis DRS, SEM, TEM, ICP and N2 adsorption-desorption techniques were used to confirm the presence of nano-crystalline material having a MFI structure and heteroatom substitution. The unit cell dimensions increase with increasing levels of nickel substitution. The crystallite size of as synthesized samples was in the range of 60–75 nm, which increased to 60–160 nm after calcination at 550°C. Percentage crystallinity and crystallite size increases with increasing nickel substitution level up to 0.17 mol and beyond that the material becomes amorphous.  相似文献   

20.
Nanometric-sized gadolinia (Gd2O3) powders were obtained by applying solid-state displacement reaction at room temperature and low temperature calcination. The XRD analysis revealed that the room temperature product was gadolinium hydroxide, Gd(OH)3. In order to induce crystallization of Gd2O3, the subsequent calcination at 600  1200 °C of the room temperature reaction products was studied. Calculation of average crystallite size (D) as well as separation of the effect of crystallite size and strain of nanocrystals was performed on the basic of Williamson-Hall plots. The morphologies of powders calcined at different temperatures were followed by scanning electron microscopy. The pure cubic Gd2O3 phase was made at 600 °C which converted to monoclinic Gd2O3 phase between 1400° and 1600 °C. High-density (96% of theoretical density) ceramic pellet free of any additives was obtained after pressureless sintering at 1600 °C for 4 h in air, using calcined powder at 600 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号