首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We propose and analyze a cross-layer integrated mobility and service management scheme called DMAPwSR in Mobile IPv6 environments with the goal to minimize the overall mobility and service management cost for serving mobile users with diverse mobility and service characteristics. The basic idea of DMAPwSR is that each mobile node (MN) can utilize its cross-layer knowledge to choose smart routers to be its dynamic mobility anchor points (DMAPs) to balance the cost associated with mobility services versus packet delivery services. These smart routers are just access routers for MIPv6 systems except that they are capable of processing binding messages from the MN and storing the current location of the MN in the routing table for forwarding service packets destined to the MN. The MN’s DMAP changes dynamically as the MN roams across the MIPv6 network. Furthermore the DMAP service area also changes dynamically reflecting the MN’s mobility and service behaviors dynamically. Unlike previous mobility management protocols such as HMIPv6 that focus only on mobility management, DMAPwSR considers integrated mobility and service management. We develop an analytical model based on stochastic Petri nets to analyze DMAPwSR and compare its performance against MIPv6 and HMIPv6. We validate analytical solutions obtained through extensive simulation including sensitivity analysis of simulation results with respect to the network coverage model, the MN’s residence time distribution and the DMAP service area definition.  相似文献   

3.
Mobile IP is a simple and scalable global mobility solution. However, it may cause excessive signaling traffic and long signaling delay. Mobile IP regional registration is proposed to reduce the number of location updates to the home network and to reduce the signaling delay. This paper introduces a novel distributed and dynamic regional location management for Mobile IP where the signaling burden is evenly distributed and the regional network boundary is dynamically adjusted according to the up-to-date mobility and traffic load for each terminal. In our distributed system, each user has its own optimized system configuration which results in the minimal signaling traffic. In order to determine the signaling cost function, a new discrete analytical model is developed which captures the mobility and packet arrival pattern of a mobile terminal. This model does not impose any restrictions on the shape and the geographic location of subnets in the Internet. Given the average total location update and packet delivery cost, an iterative algorithm is then used to determine the optimal regional network size. Analytical results show that our distributed dynamic scheme outperforms the IETF Mobile IP regional registration scheme for various scenarios in terms of reducing the overall signaling cost.  相似文献   

4.
In this paper, we propose and analyze DMAP-FR, a mobility and service management scheme with failure recovery (FR) control in Mobile IPv6 systems. The basic idea behind DMAP-FR is to leverage access routers (ARs) running as regional mobility anchor points (MAPs) as in Hierarchical Mobile IPv6 (HMIPv6) for mobility and service management for mobile nodes (MNs). However, unlike HMIPv6, DMAP-FR allows the MAP of each MN to be determined dynamically based on the mobility and service characteristics of the MN and the failure behavior of ARs with the goal to minimize the network traffic. DMAP-FR incorporates fault tolerance mechanisms to allow the system to quickly recover from AR and MAP failures. We identify the best dynamic regional area size for the selection of MAP for each MN such that the overall network traffic due to servicing mobility, service and fault tolerance related operations is minimized. We demonstrate that DMAP-FR outperforms HMIPv6 for the same AR failure rate.  相似文献   

5.
Supporting IP Multicast for Mobile Hosts   总被引:6,自引:0,他引:6  
  相似文献   

6.
We propose and analyze a multicast algorithm named Dynamic Agent-based Hierarchical Multicast (DAHM) for wireless mesh networks that supports user mobility and dynamic group membership. The objective of DAHM is to minimize the overall network cost incurred. DAHM dynamically selects multicast routers serving as multicast agents for integrated mobility and multicast service management, effectively combining backbone multicast routing and local unicast routing into an integrated algorithm. As the name suggests, DAHM employs a two-level hierarchical multicast structure. At the upper level is a backbone multicast tree consisting of mesh routers with multicast agents being the leaves. At the lower level, each multicast agent services those multicast group members within its service region. A multicast group member changes its multicast agent when it moves out of the service region of the current multicast agent. The optimal service region size of a multicast agent is a critical system parameter. We propose a model-based approach to dynamically determine the optimal service region size that achieves network cost minimization. Through a comparative performance study, we show that DAHM significantly outperforms two existing baseline multicast algorithms based on multicast tree structures with dynamic updates upon member movement and group membership changes.  相似文献   

7.
针对现有HIP机制不支持节点微移动的问题,该文提出了基于动态层次位置管理的HIP移动性支持机制。在该机制中,网络划分成多个自治域,每个自治域划分成多个注册域。当节点在同一个注册域内移动时,在管理该注册域的本地集合服务点中进行位置更新;当节点在同一个自治域内移动时,在管理该自治域的网关集合服务点中进行位置更新。节点根据自己的移动速率以及呼叫到达率选取本地集合服务点并计算注册域的最佳范围。仿真结果表明,该机制能较好地降低节点移动时的信令开销,支持节点微移动。  相似文献   

8.
Traditional mobile multicast schemes have higher multicast tree reconfiguration cost or multicast packet delivery cost. Two costs are very critical because the former affects the service disruption time during handoff while the latter affects the packet delivery delay. Although the range‐based mobile multicast (RBMoM) scheme and its similar schemes offer the trade‐off between two costs to some extent, most of them do not determine the size of service region, which is critical to the network performance. Hence, we propose a dynamic region‐based mobile multicast (DRBMoM) to dynamically determine the optimal service region for reducing the multicast tree reconfiguration and multicast packet delivery costs. DRBMoM provides two versions: (i) the per‐user version, named DRBMoM‐U, and (ii) the aggregate‐users version, named DRBMoM‐A. Two versions have different applicability, which are the complementary technologies for pursuing efficient mobile multicast. Though having different data information and operations, two versions have the same method for finding the optimal service region. To that aim, DRBMoM models the users' mobility with arbitrary movement directional probabilities in 2‐D mesh network using Markov Chain, and predicts the behaviors of foreign agents' (FAs') joining in a multicast group. DRBMoM derives a cost function to formulate the average multicast tree reconfiguration cost and the average multicast packet delivery cost, which is a function of service region. DRBMoM finds the optimal service region that can minimize the cost function. The simulation tests some key parameters of DRBMoM. In addition, the simulation and numerical analyses show the cost in DRBMoM is about 22∼50% of that in RBMoM. At last, the applicability and computational complexity of DRBMoM and its similar scheme are analyzed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
Dynamic hierarchical mobility management strategy for mobile IP networks   总被引:14,自引:0,他引:14  
One of the major challenges for the wireless network design is the efficient mobility management, which can be addressed globally (macromobility) and locally (micromobility). Mobile Internet protocol (IP) is a commonly accepted standard to address global mobility of mobile hosts (MHs). It requires the MHs to register with the home agents (HAs) whenever their care-of addresses change. However, such registrations may cause excessive signaling traffic and long service delay. To solve this problem, the hierarchical mobile IP (HMIP) protocol was proposed to employ the hierarchy of foreign agents (FAs) and the gateway FAs (GFAs) to localize registration operations. However, the system performance is critically affected by the selection of GFAs and their reliability. In this paper, we introduce a novel dynamic hierarchical mobility management strategy for mobile IP networks, in which different hierarchies are dynamically set up for different users and the signaling burden is evenly distributed among the network. To justify the effectiveness of our proposed scheme, we develop an analytical model to evaluate the signaling cost. Our performance analysis shows that the proposed dynamic hierarchical mobility management strategy can significantly reduce the system signaling cost under various scenarios and the system robustness is greatly enhanced. Our analysis also shows that the new scheme can outperform the Internet Engineering Task Force mobile IP hierarchical registration scheme in terms of the overall signaling cost. The more important contribution is the novel analytical approach in evaluating the performance of mobile IP networks.  相似文献   

10.
Mobile IPv6 (MIPv6) is a work in progress IETF standard for enabling mobility in IPv6 networks and is expected to have wide deployment. We investigate an integrated mobility and service management scheme based on MIPv6 with the goal to minimize the overall network signaling cost in MIPv6 systems for serving mobility and service management related operations. Our design extends IETF work-in-progress Hierarchical Mobile IPv6 (HMIPv6) with the notion of dynamic mobility anchor points (DMAPs) for each mobile node (MN) instead of static ones for all MNs. These DMAPs are access routers chosen by individual MNs to act as a regional router to reduce the signaling overhead for intra-regional movements. The DMAP domain size, i.e., the number of subnets covered by a DMAP, is based on the MN’s mobility and service characteristics. Under our DMAP protocol, a MN interacts with its home agent and application servers as in the MIPv6 protocol, but optimally determines when and where to launch a DMAP to minimize the network cost in serving the user’s mobility and service management operations. We demonstrate that our DMAP protocol for integrated mobility and service management yields significantly improved performance over basic MIPv6 and HMIPv6.  相似文献   

11.
In Mobile IP, the signaling traffic overhead will be too high since the new Care-of-Address (CoA) of the mobile node (MN) is registered all the way with the home agent (HA) whenever the MN has moved into a new foreign network. To complement Mobile IP in better handling local movement, several IP micro protocols have been proposed. These protocols introduce a hierarchical mobility management scheme, which divides the mobility into micro mobility and macro mobility according to whether the host's movement is intra-domain or inter-domain. Thus, the requirements on performance and flexibility are achieved, especially for frequently moving hosts. This paper introduces a routing protocol for multicast source mobility on the basis of the hierarchical mobile management scheme, which provides a unified global architecture for both uni- and multicast routing in mobile networks. The implementation of multicast services adopts an improved SSM (Source Specific Multicast) model, which combines the advantages of the existing protocols in scalability and mobility transparency. Simulation results show that the proposed protocol has better performance than the existing routing protocols for SSM source mobility.  相似文献   

12.
MobiCast: A multicast scheme for wireless networks   总被引:11,自引:0,他引:11  
In this paper, we propose a multicast scheme known as MobiCast that is suitable for mobile hosts in an internetwork environment with small wireless cells. Our scheme adopts a hierarchical mobility management approach to isolate the mobility of the mobile hosts from the main multicast delivery tree. Each foreign domain has a domain foreign agent. We have simulated our scheme using the Network Simulator and the measurements show that our multicast scheme is effective in minimizing disruptions to a multicast session due to the handoffs of the mobile group member, as well as reducing packet loss when a mobile host crosses cell boundaries during a multicast session.  相似文献   

13.
Mobile user location update and paging under delay constraints   总被引:3,自引:0,他引:3  
Wireless personal communication networks (PCNs) consist of a fixed wireline network and a large number of mobile terminals. These terminals are free to travel within the PCN coverage area without service interruption. Each terminal periodically reports its location to the network by a process calledlocation update. When a call for a specific terminal arrives, the network will determine the exact location of the destination terminal by a process calledterminal paging. This paper introduces a mobile user location management mechanism that incorporates a distance based location update scheme and a selective paging mechanism that satisfies predefined delay requirements. An analytical model is developed which captures the mobility and call arrival pattern of a terminal. Given the respective costs for location update and terminal paging, the average total location update and terminal paging cost is determined. An iterative algorithm is then used to determine the optimal location update threshold distance that results in the minimum cost. Analytical results are also obtained to demonstrate the relative cost incurred by the proposed mechanism under various delay requirements.  相似文献   

14.
In this paper, we propose an extension to the personal communication services (PCS) location management protocol which uses dynamically overlapped registration areas. The scheme is based on monitoring the aggregate mobility and call pattern of the users during each reconfiguration period and adapting to the mobility and call patterns by either expanding or shrinking registration areas at the end of each reconfiguration period. We analytically characterize the trade-off resulting from the inclusion or exclusion of a cell in a registration area in terms of expected change in aggregate database access cost and signaling overhead. This characterization is used to guide the registration area adaption in a manner in which the signaling and database access load on any given location register (LR) does not exceed a specified limit. Our simulation results show that it is useful to dynamically adapt the registration areas to the aggregate mobility and call patterns of the mobile units when the mobility pattern exhibits locality. For such mobility and call patterns, the proposed scheme can greatly reduce the average signaling and database access load on LRs. Further, the cost of adapting the registration areas is shown to be low in terms of memory and communication requirements.  相似文献   

15.
An important issue in location management for dealing with user mobility in wireless networks is to reduce the cost associated with location updates and searches. The former operation occurs when a mobile user moves to a new location registration area and the network is being informed of the mobile user's current location; the latter operation occurs when there is a call for the mobile user and the network must deliver the call to the mobile user. In this paper, we propose and analyze a class of new agent-based forwarding schemes with the objective to reduce the location management cost in mobile wireless networks. We develop analytical models to compare the performance of the proposed schemes with existing location management schemes to demonstrate their feasibility and also to reveal conditions under which our proposed schemes are superior to existing ones. Our proposed schemes are particularly suitable for mobile networks with switches which can cover a large number of location registration areas.  相似文献   

16.
Scalable Multicast Protocol in IP-Based Mobile Networks   总被引:4,自引:0,他引:4  
  相似文献   

17.
As the volume of mobile traffic consisting of video, voice, and data is rapidly expanding, a challenge remains with the mobile transport network, which must deliver data traffic to mobile devices without degrading the service quality. Since every Internet service holds its own service quality requirements, the flow-aware traffic management in fine granularity has been widely investigated to guarantee Quality of Service (QoS) in the IP networks. However, the mobile flow-aware management has not been sufficiently developed yet because of the inherent constraints of flow routing in the mobile networks regarding flow-aware mobility and QoS support. In this paper, we propose a flow-aware mobility and QoS support scheme called mobile flow-aware network (MFAN) for IP-based wireless mobile networks. The proposed scheme consists of dynamic handoff mechanisms based on QoS requirements per flow to reduce the processing overhead of the flow router while ensuring QoS guarantee to mobile flows. The performance analyses of the proposed scheme demonstrate that MFAN successfully supports the mobile flow traffic delivery while satisfying the QoS requirement of flows in the wireless mobile IP networks.  相似文献   

18.
针对身份与位置的动态解析映射问题,依据终端的移动模式和通信特征,提出了一种基于代价函数的动态分布式移动解析映射机制。该机制将移动终端的通信状态划分为移动更新、均衡传输和解析查询3种通信模式,以最小化解析映射代价为目标,分别提出了基于分布式多播、一致性散列协同和主动式域内共享的解析映射方法,设计了对应的注册更新、解析查询和数据路由解析优化策略。仿真结果表明,该机制实现了移动过程中解析映射代价的最小化,具有较小的解析时延,对网络结构的动态变化具有良好的适应性。  相似文献   

19.
为了满足未来空间高速通信的迫切需求,进行了W波段(75~110 GHz)无线高速通信的研究。通信系统中采用光子上变频技术产生传输速率为20 Gbit/s的W波段QPSK信号,解决了电子器件带宽受限的瓶颈问题。在接收机端采用模拟下变频和先进数字信号处理技术,实现了无线传输360 m距离后信号的离线解调。最终系统的误码率小于硬判决前向纠错(FEC)门限3.8×10?3。  相似文献   

20.
The Universal Mobile Telecommunications System (UMTS) all-IP network supports IP multimedia services through the IP Multimedia Subsystem (IMS). This paper proposes a mobile Quality-of-Service (QoS) framework for heterogeneous IMS interworking. To reduce the handoff disruption time, this framework supports the IMS mobility based on the concept of Session Initiation Protocol (SIP) multicast. In our approach, the mobility of a User Equipment (UE) is modeled as a transition in the multicast group membership. With the concept of dynamic shifting of the multicast group's members, the flow of actual data packets can be switched to the new route as quickly as possible. To overcome mobility impact on service guarantees, UEs need to make QoS resource reservations in advance at neighboring IMS networks, where they may visit during the lifetime of the ongoing sessions. These locations become the leaves of the multicast tree in our approach. To obtain more efficient use of the scarce wireless bandwidth, our approach allows UEs to temporarily exploit the inactive bandwidths reserved by other UEs in the current IMS/access network. Analytic and simulation models are developed to investigate our resource reservation scheme. The results indicate that our scheme yields comparable performance to that of the previously proposed channel assignment schemes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号