首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Flow field flow fractionation (FIFFF), inductively coupled plasma-mass spectroscopy (ICP-MS), and transmission electron microscopy (TEM) coupled to X-ray energy dispersive spectrometry (X-EDS) are used in series for the first time to characterize colloids. Results demonstrate the utility of FIFFF-ICP-MS-TEM/X-EDS to relate physical properties (size) of colloids to their chemical properties (chemical composition, surface chemical composition, and colloids-trace elements association). Results suggest that the major part of natural organic matter (NOM) is concentrated in the fraction < 0.01 microm (C2). Aluminum, iron, and manganese are the main colloidal components in the fraction 0.01-0.45 microm (C1). Aluminum occurs as aluminum oxides or aluminosilicates in the whole size range, while iron and manganese occur as individual oxyhydroxides in the size range < 0.20 microm. Within the C2 fraction, Al, Mn, Cu, and Ni elements are complexed to NOM (e.g., humic substances). Iron is complexed to NOM in some samples and probably free in other samples. Lead is totally free in all samples. Within the C1 fraction, Cu and Pb are mostly associated to Fe and Mn oxyhydroxides. Consequently, NOM with Fe and Mn oxyhydroxides are the main colloidal carriers of trace elements in the Loire watershed system.  相似文献   

2.
The effects of iron and manganese (hydr)oxide formation processes on the trace metal adsorption properties of these metal (hydr)oxides and their mixtures was investigated by measuring lead adsorption by iron and manganese (hydr)oxides prepared by a variety of methods. Amorphous iron (hydr)oxide formed by fast precipitation at pH 7.5 exhibited greater Pb adsorption (gamma(max) = 50 mmol of Pb/mol of Fe at pH 6.0) than iron (hydr)oxide formed by slow, diffusion-controlled oxidation of Fe(II) at pH 4.5-7.0 or goethite. Biogenic manganese(III/IV) (hydr)oxide prepared by enzymatic oxidation of Mn(II) by the bacterium Leptothrix discophora SS-1 adsorbed five times more Pb (per mole of Mn) than an abiotic manganese (hydr)oxide prepared by oxidation of Mn(II) with permanganate, and 500-5000 times more Pb than pyrolusite oxides (betaMnO2). X-ray crystallography indicated that biogenic manganese (hydr)oxide and iron (hydr)oxide were predominantly amorphous or poorly crystalline and their X-ray diffraction patterns were not significantly affected by the presence of the other (hydr)oxide during formation. When iron and manganese (hydr)oxides were mixed after formation, or for Mn biologically oxidized with iron(III) (hydr)oxide present, observed Pb adsorption was similar to that expected for the mixture based on Langmuir parameters for the individual (hydr)oxides. These results indicate that interactions in iron/manganese (hydr)oxide mixtures related to the formation process and sequence of formation such as site masking, alterations in specific surface area, or changes in crystalline structure either did not occur or had a negligible effect on Pb adsorption by the mixtures.  相似文献   

3.
A mass budget study of major in-lake Al fluxes, palaeolimnological data on a >10,000 year old sediment record, and in situ photochemical experiments performed at Plesné Lake (Czech Republic) suggest that photochemical liberation of organically bound aluminum (Al) and iron (Fe) by solar radiation is a significant natural source of their ionic species for lakes and subsequent oxyhydroxides for sediments. The results show that photochemically induced transformation of dissolved Al and Fe to solid oxyhydroxides deposited to Plesné Lake sediment dominated (91 and 73%, respectively) their sedimentary flux throughout the preindustrial era, since soil formation initiated in the catchment. The following sequence of processes occurs: (i) soil organic acids dissolve and bind metals and export them from terrestrial to aquatic systems. (ii) Photochemical decomposition of organic-metal complexes liberates a significant portion (approximately 50% in Pleseé Lake) of organically bound Al and Fe as inorganic ions. (iii) The liberated ionic Al and Fe hydrolyze, precipitate as oxyhydroxide particles, and settle. We hypothesise that the same Al and Fe transporting process occurs in other lakes and coastal marine areas and is ecologically important because Al and Fe oxyhydroxides can bind trace metals and phosphorus.  相似文献   

4.
Concentrations of 30 trace elements, Li, V, Cr, Mn, Fe, Ni, Cu, Mo, Zn, Se, Sr, Co, Al, Ti, As, Cs, Sc, Te, Ba, Ga, Pb, Sn, Cd, Sb, Ag, Tm, TI, Be, Hg and U in major cultured freshwater fish species (common carp-Cyprinus carpio, grass carp-Ctenopharyngodon idella and rainbow trout-Oncorhynchus mykiss) with the corresponding feed from 23 fish farms in Beijing, China, were investigated. The results revealed that Fe, Zn, Cu, Mn, Sr, Se were the major accumulated essential elements and Al, Ti were the major accumulated non-essential elements, while Mo, Co, Ga, Sn, Cd, Sb, Ag, Tm, U, TI, Be, Te, Pb and Hg were hardly detectable. Contents of investigated trace elements were close to or much lower than those in fish from other areas in China. Correlation analysis suggested that the elemental concentrations in those fish species were relatively constant and did not vary much with the fish feed. In comparison with the limits for aquafeeds and fish established by Chinese legislation, Cd in 37.5% of rainbow trout feeds and As in 20% of rainbow trout samples exceeded the maximum limit, assuming that inorganic As accounts for 10% of total As. Further health risk assessment showed that fish consumption would not pose risks to consumers as far as non-essential element contaminants are concerned. However, the carcinogenic risk of As in rainbow trout for the inhabitants in Beijing exceeded the acceptable level of 10?4, to which more attention should be paid.  相似文献   

5.
Arsenic-containing minerals mobilized during mining activities and deposited to Lake Coeur d'Alene (CDA), Idaho sediments represent a potential source of soluble As to the overlying water. Our objective was to delineate the processes controlling porewater As concentrations within Lake CDA sediments. Sediment and porewater As concentrations were determined, and solid-phase As associations were probed using X-ray absorption near-edge structure (XANES) spectroscopy. Although maximum As in the sediment porewaters varied from 8.4 to 16.2 microM, As sorption on iron oxyhydroxides at the oxic sediment-water interface prevented flux to overlying water. Floods deposit sediment containing variable amounts of arsenopyrite (FeAsS), with majorfloods depositing large amounts of sediment that bury and preserve reduced minerals. Periods of lower deposition increase sediment residence times in the oxic zone, promoting oxidation of reduced minerals, SO4(2-) efflux, and formation of oxide precipitates. Depositional events bury oxides containing sorbed As, transitioning them into anoxic environments where they undergo dissolution, releasing As to the porewater. High Fe:S ratios limit the formation of arsenic sulfides in the anoxic zone. As a result of As sequestration at the sediment-water interface and its release upon burial, decreased concentrations of porewater As will not occur unless As-bearing erosional inputs are eliminated.  相似文献   

6.
Biogeochemically modified pore waters from subterranean estuaries, defined as the mixing zone between freshwater and saltwater in a coastal aquifer, are transported to coastal waters through submarine groundwater discharge (SGD). SGD has been shown to impact coastal and perhaps global trace metal budgets. The focus of this study was to investigate the biogeochemical processes that control arsenic cycling in subterranean estuaries. Total dissolved As, as well as a suite of other trace metals and nutrients, were measured in a series of wells and sediment cores at the head of Waquoit Bay, MA. Dissolved As ranged from below detection to 9.5 microg/kg, and was associated with plumes of dissolved Fe, Mn, and P in the groundwater. Sedimentary As, ranging from 360 to 7500 microg/kg, was highly correlated with sedimentary Fe, Mn, and P. In addition, amorphous Fe (hydr)oxides were more efficient scavengers of dissolved As than the more crystalline forms of solid-phase Fe. Given that dissolved As in the surface bay water was lower than within the subterranean estuary, our results indicate that the distribution and type of Fe and Mn (hydr)oxides in coastal aquifers exert a major influence on the biogeochemical cycling of As in subterranean estuaries and, ultimately, the fate of groundwater-derived As in marine systems influenced by SGD.  相似文献   

7.
Accumulation levels of trace elements in edible tissues of three shrimp species (Penaeus semisulcatus, Parapenaeus longirostris and Paleomon serratus) from the Gulf of Antalya, Turkey were investigated. Copper (Cu), cadmium (Cd), zinc (Zn), iron (Fe) and manganese (Mn) concentrations were determined by atomic absorption spectrophotometry. The lowest Cu (1.33 mg kg?1) and Cd (0.23 mg kg?1) and highest Mn (1.52 mg kg?1) concentrations were found in P. longirostris, the lowest Zn (6.25 mg kg?1), Fe (1.84 mg kg?1) and Mn (0.25 mg kg?1) concentrations in P. serratus and the highest Cu (6.19 mg kg?1), Cd (2.36 mg kg?1), Zn (30.84 mg kg?1) and Fe (33.89 mg kg?1) concentrations in P. semisulcatus. The Cd levels detected in P. semisulcatus and P. serratus were above legislative limits. Our results show that there were significant differences in trace element concentrations among the three shrimp species. The highest levels of the five trace elements investigated, with the exception of Mn, were found in edible tissue of P. semisulcatus. Copyright © 2007 Society of Chemical Industry  相似文献   

8.
The study identifies the role played by different components of natural aquatic systems on the poorly known geochemistry of antimony. Different chemical forms of antimony were measured in porewaters and sediments of two Sudbury lakes characterized by contrasting redox conditions at the sediment-water interface. In porewaters, Sb(III) was present under reducing conditions where it could exist as SbS2- according to thermodynamic calculations. Sb(V) was detected mainly under oxic and mildly reducing environments where its presence was attributed to the oxidizing effect of iron and manganese oxyhydroxides or to the slow kinetics of reduction by dissolved sulfide or possible complexation by it. A third form of Sb identified as refractory was obtained after UV irradiation of the water samples, suggesting an association of Sb to low molecular weight natural organic matter. The distribution of Sb in sediments of the two lakes revealed (through the comparison of profiles and statistical correlations) the importance of iron and manganese oxyhydroxides in controlling the behavior of Sb, particularly in the lake where the interface was clearly oxic. Porewater profiles indicate that the dissolution of manganese and iron oxyhydroxides under anoxic conditions leads to the simultaneous release of dissolved Sb previously sorbed onto those compounds. In reducing sediments, the control of the solubility of Sb by iron sulfides is suggested.  相似文献   

9.
Levels of arsenic and other trace elements (Al, Ba, Be, Bi, Cd, Co, Cr, Cu, Fe, Li, Mn, Mo, Ni, Pb, Sb, Se, Sn, Sr, Ti, Tl, U, V and Zn) in nine brands of wine from Slavonia (eastern Croatia) were investigated. Wines from two other viticulture areas, Istria (western Croatia) and Vojvodina (northern Serbia), were used for comparison. Elemental concentrations were determined by high resolution ICP-MS. Statistical methods were applied for the interpretation of obtained data. Regional differences were identified based on a set of geogenic elements (Al, Li, Be, Ti). Elements As and Pb were found to be of predominantly natural origin. Significant differences between the obtained values for As in wines from Slavonia and Vojvodina, compared to wines from Istria indicate that the geochemical arsenic anomalies present in these regions contribute to some extent to higher As content in analysed wines. The Cd, Ni, Zn, Fe and Cr in wine were found to be primarily of anthropogenic origin.  相似文献   

10.
Arsenic (As) geochemistry and sorption behavior were measured in As- and iron (Fe)-rich sediments of Haiwee Reservoir by deploying undoped (clear) polyacrylamide gels and hydrous ferric oxide (HFO)-doped gels in a gel probe equilibrium sampler, which is a novel technique for directly measuring the effects of porewater composition on As adsorption to Fe oxides phases in situ. Arsenic is deposited atthe sedimentsurface as As(V) and is reduced to As(III) in the upper layers of the sediment (0-8 cm), but the reduction of As(V) does not cause mobilization into the porewater. Dissolved As and Fe concentrations increased at depth in the sediment column driven by the reductive dissolution of amorphous Fe(III) oxyhydroxides and conversion to a mixed Fe(II, III) green rust-type phase. Adsorption of As and phosphorous (P) onto HFO-doped gels was inhibited at intermediate depths (10-20 cm), possibly due to dissolved organic or inorganic carbon, indicating that dissolved As concentrations were at least partially controlled by porewater composition rather than surface site availability. In sediments that had been recently exposed to air, the region of sorption inhibition was not observed, suggesting that prior exposure to air affected the extent of reductive dissolution, porewater chemistry, and As adsorption behavior. Arsenic adsorption onto the HFO-doped gels increased at depths >20 cm, and the extent of adsorption was most likely controlled by the competitive effects of dissolved phosphate. Sediment As adsorption capacity appeared to be controlled by changes in porewater composition and competitive effects at shallower depths, and by reductive dissolution and availability of sorption sites at greater burial depths.  相似文献   

11.
The aim of this study was to determine the levels of copper (Cu), manganese (Mn), zinc (Zn), iron (Fe), cadmium (Cd), lead (Pb), chromium (Cr), nickel (Ni) and selenium (Se) in sunflower honeys obtained from Thrace Region of Turkey. Trace and toxic element determination was performed by atomic absorption spectrometry after microwave digestion. The accuracy of the method was checked by the standard reference material, NIST‐SRM 1515 Apple leaves. The maximum contents of trace and toxic elements in honey samples from Kesan (polluted area) were found as 0.46, 0.82, 1.98, 14.0, 9.86 μg kg?1, 0.48 mg kg?1, 137, 115 and 290 μg kg?1 for Cu, Mn, Zn, Fe, Cd, Pb, Cr, Ni and Se, respectively.  相似文献   

12.
《Food chemistry》2005,92(2):305-309
Avocado honey samples were analyzed by inductively coupled plasma optical emission spectrometric. First, the botanical origin of the honeys was confirmed by melissopalynological analysis. Twenty-four minerals were quantified for each honey sample. The elements Al, Ba, Ca, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Na, Ni, P, Pb, S, Se, Si and Zn were detected in all samples; seven elements were very abundant (Ca, K, Mg, Na, P, S and Si), six were not abundant (Al, Cu, Fe, Li and Zn) and 11 were trace elements (As, Ba, Cd, Co, Cr, Mo, Ni, Mo, Pb, Se, Sr and V).  相似文献   

13.
The concentrations of 23 chemical elements (Al, As, Ba, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Mg, Mn, Na, Ni, Pb, Sb, Se, Sr, Th, Tl, U, Zn) were determined in 51 honey samples of different botanical origin produced in Siena County (Italy). K, Ca, Na and Mg were the most abundant elements, with mean contents of 1195, 257, 96.6 and 56.7 mg/kg, respectively. The Fe, Zn and Sr contents generally ranged from 1 to 5 mg/kg. Except for Ba, Cu, Mn and Ni, the trace element contents were below 100 μg/kg. The analytical data indicated a good level of quality of the honeys, especially with regard to the concentrations of toxic trace elements, such as As, Cd, Pb and Sb, and suggested a significant influence of the botanical origin on the element composition. Some local geological and geochemical features also seemed to affect the chemistry of the honey.  相似文献   

14.
To reveal what controls the concentration and distribution of possibly hazardous (Mn, U, Se, Cd, Bi, Pb) and nonhazardous (Fe, V, Mo, PO(4)) trace elements in groundwater of the Bengal delta, we mapped their concentrations in shallow groundwater (<60 mbgl) across 102 km(2) of West Bengal. Only Mn is a potential threat to health, with 55% of well water exceeding 0.3 mg/L, the current Indian limit for drinking water in the absence of an alternate source, and 75% exceeding the desirable limit of 0.1 mg/L. Concentrations of V are <3 μg/L. Concentrations of U, Se, Pb, Ni, Bi, and Cd, are below WHO guideline values. The distributions of Fe, Mn, As, V, Mo, U, PO(4), and δ(18)O in groundwater reflect subsurface sedimentology and sources of water. Areas of less negative δ(18)O reveal recharge by sources of evaporated water. Concentrations of Fe, As, Mo, and PO(4) are high in palaeo-channel groundwaters and low in palaeo-interfluvial groundwaters. Concentrations of U, V, and Mn, are low in palaeo-channel groundwaters and high in palaeo-interfluvial groundwaters. Concentrations of Fe and Mn are highest (18 and 6 mg/L respectively) at dual reduction-fronts that form strip interfaces at depth around the edges of palaeo-interfluvial aquifers. The fronts form as focused recharge carries dissolved organic carbon into the aquifer margins, which comprise brown, iron-oxide bearing, sand. At the Mn-reduction front, concentrations of V and Mo reach peak concentrations of 3 μg/L. At the Fe-reduction front, concentrations of PO(4) and As reach concentrations 3 mg/L and 150 μg/L respectively. Many groundwaters contain >10 mg/L of Cl, showing that they are contaminated by Cl of anthropogenic origin and that organic matter from in situ sanitation may contribute to driving reduction.  相似文献   

15.
Concentrations of 20 minor, trace and ultratrace elements relevant to human health (Ag, Al, As, Cd, Co, Cr, Cu, Fe, Hg, Li, Mn, Mo, Ni, Pb, Sb, Se, Si, Sn, V) were determined in four different varieties of the most consumed cheese in Lebanon (Halloumi, Double Crème, Baladi, Labneh) sampled at five different provinces (Grand Beirut, South of Lebanon, North of Lebanon, Mount of Lebanon and Beka’a) during the wet and dry seasons. The analyses were carried out by double focussing sector field inductively coupled plasma–mass spectrometry (ICP-MS) in order to avoid errors due to polyatomic interferences. Levels of toxic elements (As, Cd, Pb) were generally below the WHO permissible levels in dairy products. Concentrations of most elements were considerably affected by the type of cheese, the geographical site and the season of sampling.  相似文献   

16.
The content of trace elements (Ag, As, Ba, Be, Cd, Co, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Pb, Sb, Ti, Tl and V) in edible oils (virgin olive, olive, pomace-olive, sunflower, soybean and corn) from Spain was determined, using inductively-coupled plasma-mass spectrometry (ICP-MS) after microwave digestion, employing only nitric acid in this step. The method has been validated by using both an oil reference material and recovery experiments over different oil samples, obtaining satisfactory results in all cases. Inter-day repeatabilities lower than 10% were observed for all of the analysed elements in the different kinds of oil samples. Studying the content of trace elements, in order to detect tendencies in the samples of the same type of oil, principal components analysis was used. Promising groupings were observed using a model with two principal components and retaining 75.3% of the variance.  相似文献   

17.
Coal bed natural gas (CBNG) produced water is usually disposed into nearby constructed disposal ponds. Geochemistry of produced water, particularly trace elements interacting with a semiarid environment, is not clearly understood. The objective of this study was to collect produced water samples at outfalls and corresponding disposal ponds and monitor pH, iron (Fe), aluminum (Al), chromium (Cr), manganese (Mn), lead (Pb), copper (Cu), zinc (Zn), arsenic (As), boron (B), selenium (Se), molybdenum (Mo), cadmium (Cd), and barium (Ba). Outfalls and corresponding disposal ponds were sampled from five different watersheds including Cheyenne River (CHR), Belle Fourche River (BFR), Little Powder River (LPR), Powder River (PR), and Tongue River (TR) within the Powder River Basin (PRB), Wyoming from 2003 to 2005. Paired t tests were conducted between CBNG outfalls and corresponding disposal ponds for each watershed. Results suggest that produced water from CBNG outfalls is chemically different from the produced water from corresponding disposal ponds. Most trace metal concentrations in the produced water increased from outfall to disposal pond except for Ba. In disposal ponds, Ba, As, and B concentrations increased from 2003 to 2005. Geochemical modeling predicted precipitation and dissolution reactions as controlling processes for Al, Cu, and Ba concentrations in CBNG produced water. Adsorption and desorption reactions appear to control As, Mo, and B concentrations in CBNG water in disposal ponds. Overall, results of this study will be important to determine beneficial uses (e.g., irrigation, livestock/wildlife water, and aquatic life) for CBNG produced water in the PRB, Wyoming.  相似文献   

18.
A total of 480 samples of milk from 10 organically and 10 conventionally producing dairy farms in Denmark and covering 8 sampling periods over 1 year (triplicate samplings) were analysed for 45 trace elements and 6 major elements by high-resolution inductively coupled plasma mass spectrometry and inductively coupled plasma atomic emission spectrometry. Sampling, sample preparation, and analysis of the samples were performed under carefully controlled contamination-free conditions. The dairy cattle breeds were Danish-Holstein or Jersey. Sources of variance were quantified, and differences between production systems and breeds were tested. The major source of variation for most elements was week of sampling. Concentrations of Al, Cu, Fe, Mo, Rb, Se, and Zn were within published ranges. Concentrations of As, Cd, Cr, Mn and Pb were lower, and concentrations of Co and Sr were higher than published ranges. Compared with Holsteins, Jerseys produced milk with higher concentrations of Ba, Ca, Cu, Fe, Mg, Mn, Mo, P, Rh, and Zn and with a lower concentration of Bi. The organically produced milk, compared with conventionally produced milk, contained a significantly higher concentration of Mo (48 v. 37 ng/g) and a lower concentration of Ba (43 v. 62 ng/g), Eu (4 v. 7 ng/g), Mn (16 v. 20 ng/g) and Zn (4400 v. 5150 ng/g respectively). The investigation yielded typical concentrations for the following trace elements in milk, for which no or very few data are available: Ba, Bi, Ce, Cs, Eu, Ga, Gd, In, La, Nb, Nd, Pd, Pr, Rh, Sb, Sm, Tb, Te, Th, Ti, Tl, U, V, Y, and Zr.  相似文献   

19.
建立微波消解-电感耦合等离子体质谱(ICP-MS)法测定石阡苔茶中Na、Mg、K、Ca、Cr、Mn、Fe、Co、Cu、Zn、As、Se 、Mo、Cd、Sb、Hg、Pb等17种矿物质元素。结果表明,17种元素在0~1 000 ng/mL范围内呈良好的线性关系(R≥0.999 0),检出限为0.001~23.720 ng/mL,加标回收率为91.63%~104.45%,相对标准偏差(RSD)为1.26%~5.34%,精密度试验结果RSD值为0.002%~8.450%,该方法快速简单、准确、灵敏度高,能满足石阡苔茶中17种矿物质元素的检测需求。石阡苔茶样品中K元素含量最高,其次是Ca元素,必需微量元素含量从大到小顺序为:Fe、Zn、Cu、Cr、Co、Se、Mo。Hg、Pb、Cd、As 4种重金属元素含量均符合国家标准和农业部行业标准。  相似文献   

20.
Arsenic removal efficiencies of 43 household sand filters were studied in rural areas of the Red River Delta in Vietnam. Simultaneously, raw groundwater from the same households and additional 31 tubewells was sampled to investigate arsenic coprecipitation with hydrous ferric iron from solution, i.e., without contact to sand surfaces. From the groundwaters containing 10-382 microg/L As, < 0.1-48 mg/L Fe, < 0.01-3.7 mg/L P, and 0.05-3.3 mg/L Mn, similar average removal rates of 80% and 76% were found for the sand filter and coprecipitation experiments, respectively. The filtering process requires only a few minutes. Removal efficiencies of Fe, phosphate, and Mn were > 99%, 90%, and 71%, respectively. The concentration of dissolved iron in groundwater was the decisive factor for the removal of arsenic. Residual arsenic levels below 50 microg/L were achieved by 90% of the studied sand filters, and 40% were even below 10 microg/L. Fe/As ratios of > or = 50 or > or = 250 were required to ensure arsenic removal to levels below 50 or 10 microg/L, respectively. Phosphate concentrations > 2.5 mg P/L slightly hampered the sand filter and coprecipitation efficiencies. Interestingly, the overall arsenic elimination was higher than predicted from model calculations based on sorption constants determined from coprecipitation experiments with artificial groundwater. This observation is assumed to result from As(lll) oxidation involving Mn, microorganisms, and possibly dissolved organic matter present in the natural groundwaters. Clear evidence of lowered arsenic burden for people consuming sand-filtered water is demonstrated from hair analyses. The investigated sand filters proved to operate fast and robust for a broad range of groundwater composition and are thus also a viable option for mitigation in other arsenic affected regions. An estimation conducted for Bangladesh indicates that a median residual level of 25 microg/L arsenic could be reached in 84% of the polluted groundwater. The easily observable removal of iron from the pumped water makes the effect of a sand filter immediately recognizable even to people who are not aware of the arsenic problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号