首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Temperature-labile cholesterol ester hydrolase (TLCEH) was purified 2,000-fold from rat testis cytosol using sequential ammonium sulfate precipitation, cation exchange chromatography, and isoelectric focusing chromatography. the purified enzyme, which exhibited a single silver-stained band (66 kDa) on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, was inhibited 89% by the elevation of the temperature from 32 to 37 degrees C and 65% by treatment with alkaline phosphatase. Its amino acid composition and amino-terminal sequence differed markedly from those of isoenzymes from other tissues, although 6 of 20 residues were conserved. Polyclonal antibodies raised to TLCEH exhibited no cross-immunoreactivity with cytosolic proteins from other rat tissues and inhibited 70% of testis cytosolic CEH. Western blot analysis demonstrated a high correlation between immunoreactive protein and catalytic activity in the testis during maturation of the rat, with a marked increase at the onset of spermatogenesis. TLCEH was inhibited by physiological levels of Cu2+ (I50 = 0.60 microM) and Zn2+ (I50 = 0.75 microM) and by Cd2+ (I50 = 0.15 microM) but not by 0.5-5 mM Mn2+.  相似文献   

2.
A new metalloendopeptidase was purified to apparent homogeneity from a homogenate of normal human brain using successive steps of chromatography on DEAE-Trisacryl, hydroxylapatite and Sephacryl S-200. The purified enzyme cleaved the Gly33-Leu34 bond of the 25-35 neurotoxic sequence of the Alzheimer beta-amyloid 1-40 peptide producing soluble fragments without neurotoxic effects. This enzyme activity was only inhibited by divalent cation chelators such as EDTA, EGTA and o-phenanthroline (1 mM) and was insensitive to phosphoramidon and captopril (1 microM concentration), specific inhibitors of neutral endopeptidase (EC 3.4.24.11) and angiotensin-converting enzyme (EC 3.4.15.1), respectively. The high affinity of this human brain endopeptidase for beta-amyloid 1-40 peptide (Km = 5 microM) suggests that it may play a physiological role in the degradation of this substance produced by normal cellular metabolism. It may also be hypothesized that the abnormal accumulation of the amyloid beta-protein in Alzheimer's disease may be initiated by a defect or an inactivation of this enzyme.  相似文献   

3.
Enteropeptidase, also known as enterokinase, initiates the activation of pancreatic hydrolases by cleaving and activating trypsinogen. Enteropeptidase is synthesized as a single-chain protein, whereas purified enteropeptidase contains a approximately 47-kDa serine protease domain (light chain) and a disulfide-linked approximately 120-kDa heavy chain. The heavy chain contains an amino-terminal membrane-spanning segment and several repeated structural motifs of unknown function. To study the role of heavy chain motifs in substrate recognition, secreted variants of recombinant bovine proenteropeptidase were constructed by replacing the transmembrane domain with a signal peptide. Secreted variants containing both the heavy chain (minus the transmembrane domain) and the catalytic light chain (pro-HL-BEK (where BEK is bovine enteropeptidase)) or only the catalytic domain (pro-L-BEK) were expressed in baby hamster kidney cells and purified. Single-chain pro-HL-BEK and pro-L-BEK were zymogens with extremely low catalytic activity, and both were activated readily by trypsin cleavage. Trypsinogen was activated efficiently by purified enteropeptidase from bovine intestine (Km = 5.6 microM and kcat = 4.0 s-1) and by HL-BEK (Km = 5.6 microM and kcat = 2.2 s-1), but not by L-BEK (Km = 133 microM and kcat = 0.1 s-1); HL-BEK cleaved trypsinogen at pH 5.6 with 520-fold greater catalytic efficiency than did L-BEK. Qualitatively similar results were obtained at pH 8.4. In contrast to this striking difference in trypsinogen recognition, the small synthetic substrate Gly-Asp-Asp-Asp-Asp-Lys-beta-naphthylamide was cleaved with similar kinetic parameters by both HL-BEK (Km = 0.27 mM and kcat = 0.07 s-1) and L-BEK (Km = 0.60 mM and kcat = 0.06 s-1). The presence of the heavy chain also influenced the rate of reaction with protease inhibitors. Bovine pancreatic trypsin inhibitor preferred HL-BEK (initial Ki = 99 nM and final Ki* = 1.8 nM) over L-BEK (Ki = 698 nM and Ki* = 6.2 nM). Soybean trypsin inhibitor exhibited a reciprocal pattern, inhibiting L-BEK (Ki* = 1.6 nM), but not HL-BEK. These kinetic data indicate that the enteropeptidase heavy chain has little influence on the recognition of small peptides, but strongly influences macromolecular substrate recognition and inhibitor specificity.  相似文献   

4.
2-Ketoaldonate reductase, which is involved in ketogluconate catabolism, was purified to homogeneity from Brevibacterium ketosoreductum ATCC21914. The enzyme was found to catalyze the reduction of 2,5-diketo-D-gluconate to 5-keto-D-gluconate, and to a lesser extent, 2-keto-D-gluconate to D-gluconate, and 2-keto-L-gluconate to L-idonate. The molecular mass of the reductase was 35 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and 72 kDa by gel filtration, indicating that the native enzyme may exist as a dimer. The reductase was optimally active at pH 6.0 with NADPH as a preferred electron donor. The pI of 4.7 was measured for the enzyme. The apparent Km for 2,5-diketo-D-gluconate and NADPH were 5 microM and 10 microM, respectively. The amino-terminal amino acid sequence was NH2-Ala-Ser-Ile-Ser-Val-Ser-Val-Pro-Ser-Ala- Arg-Leu-Ala-Glu-Asp-Leu-Ser-Asp-Ile-Glu.  相似文献   

5.
The single-chain procofactor factor V is cleaved by thrombin (FVaIIa) at Arg709, Arg1018, and Arg1545 and by a variety of other proteases to generate a cofactor species with various levels of cofactor function. Having demonstrated previously that monocyte-bound forms of cathepsin G and elastase cleave and activate factor V, studies were initiated here using purified proteins to probe factor V structure/function. Electrophoretic, Western blotting, and amino-terminal sequence analyses revealed that cathepsin G cleaves factor V at several sites (Phe1031, Leu1447, Tyr1518, and potentially Tyr696), ultimately generating an amino-terminal 103 kDa heavy chain and a carboxy-terminal 80 kDa light chain (FVaCG). Elastase also cleaves factor V at several sites (Ile708, Ile819, Ile1484, and potentially Thr678), generating a cofactor species, FVaHNE, with an amino-terminal 102 kDa heavy chain and a carboxy-terminal 90 kDa light chain. Incubation of FVaIIa with either cathepsin G or elastase resulted in cleavage within the heavy chain, releasing peptides of approximately 2000 and approximately 3000 Da, respectively, generating FVaIIa/CG and FVaIIa/HNE. The functional activity of each cofactor species was assessed either by clotting assay or by employing a purified prothrombinase assay using saturating amounts of factor Xa. Significant differences in cofactor function were observed between the two assay systems. Whereas FVaIIa, FVaCG, FVaIIa/CG, FVaHNE, and FVaIIa/HNE all had similar cofactor activities in the purified prothrombinase assay, FVaCG and FVaHNE had no cofactor activity in the clotting-based assay, and FVaIIa/CG and FVaIIa/HNE had approximately 30-35% clotting activity relative to FVaIIa. These disparate results led us to examine the binding interactions of these cofactors with the various prothrombinase components. Kinetic analyses indicated that FVaIIa (Kd(app) = 0.096 nM), FVaIIa/CG (Kd(app) = 0.244 nM), and FVaIIa/HNE (Kd(app) = 0.137 nM) bound to membrane-bound factor Xa much more effectively than FVaCG (Kd(app) = 1.46 nM) and FVaHNE (Kd(app) = 0.818 nM). In contrast, studies of the activated protein C (APC)-catalyzed inactivation of each of the factor V(a) species indicated that they were all equivalent substrates for APC with no differences observed in the rate of inactivation or the cleavage mechanism, suggesting that APC interacts with the light chain at a site distinct from factor Xa. The Km values for prothrombin, as well as the kcat values for each of the FV(a) species, were all similar (approximately 0.25 microM and approximately 1900 min-1). In addition, kinetic analyses indicated that whereas FVaCG and FVaHNE exhibited a slightly reduced ability to interact with phospholipid vesicles (approximately 2-3-fold), the remaining FV(a) species assembled equally well on this surface. Collectively, these data indicate that FVaCG and FVaHNE have a diminished capacity to support factor Xa binding; however, cleavage at Arg1545 and removal of the extended B-domain in these cofactors restore near-total factor Xa binding. Thus, cleavage at Arg1545 optimizes cofactor function within prothrombinase by facilitating factor Xa binding to membrane-bound FVa.  相似文献   

6.
Two intramolecularly quenched fluorogenic peptides containing o-aminobenzoyl (Abz) and ethylenediamine 2,4-dinitrophenyl (EDDnp) groups at amino- and carboxyl-terminal amino acid residues, Abz-DArg-Arg-Leu-EDDnp (Abz-DRRL-EDDnp) and Abz-DArg-Arg-Phe-EDDnp (Abz-DRRF-EDDnp), were selectively hydrolyzed by neutral endopeptidase (NEP, enkephalinase, neprilysin, EC 3.4.24.11) at the Arg-Leu and Arg-Phe bonds, respectively. The kinetic parameters for the NEP-catalyzed hydrolysis of Abz-DRRL-EDDnp and Abz-DRRF-EDDnp were K(m) = 2.8 microM, kcat = 5.3 min-1, kcat/K(m) = 2 min-1 microM-1 and K(m) = 5.0 microM, kcat = 7.0 min-1, kcat/K(m) = 1.4 min-1 microM-1, respectively. The high specificity of these substrates was demonstrated by their resistance to hydrolysis by metalloproteases [thermolysin (EC 3.4.24.2), angiotensin-converting enzyme (ACE; EC 3.4.24.15)], serineproteases [trypsin (EC 3.4.21.4), alpha-chymotrypsin (EC 3.4.21.1)] and proteases present in tissue homogenates from kidney, lung, brain and testis. The blocked amino- and carboxyl-terminal amino acids protected these substrates against the action of aminopeptidases, carboxypeptidases and ACE. Furthermore, DR amino acids ensured total protection of Abz-DRRL-EDDnp and Abz-DRRF-EDDnp against the action of thermolysin and trypsin. Leu-EDDnp and Phe-EDDnp were resistant to hydrolysis by alpha-chymotrypsin. The high specificity of these substrates suggests their use for specific NEP assays in crude enzyme preparations.  相似文献   

7.
The 26 S proteasome can be assembled from the multicatalytic protease (or 20 S proteasome) and a large multisubunit regulatory complex in an ATP-dependent reaction. The 26 S proteasome and its regulatory complex were purified from rabbit reticulocytes for characterization of their nucleotidase properties. Both particles hydrolyze ATP, CTP, GTP, and UTP to the corresponding nucleoside diphosphate and inorganic phosphate. The Km values for hydrolysis of specific nucleotides by the 26 S proteasome are 15 microM for ATP and CTP, 50 microM for GTP, and 100 microM for UTP; Km values for nucleotide hydrolysis by the regulatory complex are 2-4-fold higher for each nucleotide. Several ATPase inhibitors (erythro-9-[3-(2-hydroxynonyl)]adenine, oligomycin, ouabain, and thapsigargin) had no effect on ATP hydrolysis by either complex whereas known inhibitors of proteolysis by the 26 S enzyme (hemin, N-ethylmaleimide (NEM), and vanadate) significantly reduced ATP hydrolysis by both particles. Hydrolysis of all nucleotides was inhibited by 5 mM NEM but only GTP and UTP hydrolysis was significantly reduced at 50 microM NEM. The 15 microM Km for ATP hydrolysis by the 26 S proteasome is virtually identical to the observed Km of 12 microM ATP for Ub-conjugate degradation. Although nucleotide hydrolysis is required for protein degradation by the 26 S proteasome, nucleotide hydrolysis and peptide bond cleavage are not strictly coupled. Substrate specificity constants (kcat/Km) are similar for hydrolysis of each nucleotide, yet GTP and UTP barely supported Ub-conjugate degradation. Further evidence that nucleotide hydrolysis is not coupled to peptide bond cleavage was obtained using N-acetyl-leucyl-leucyl-norleucinal (LLnL). This compound inhibited peptide hydrolysis by the multicatalytic protease and Ub-conjugate degradation by the 26 S proteasome, but it had little effect on ATP or UTP hydrolysis by the 26 S enzyme.  相似文献   

8.
The steady-state cleavage of catechols by 2,3-dihydroxybiphenyl 1, 2-dioxygenase (DHBD), the extradiol dioxygenase of the biphenyl biodegradation pathway, was investigated using a highly active, anaerobically purified preparation of enzyme. The kinetic data obtained using 2,3-dihydroxybiphenyl (DHB) fit a compulsory order ternary complex mechanism in which substrate inhibition occurs. The Km for dioxygen was 1280 +/- 70 microM, which is at least 2 orders of magnitude higher than that reported for catechol 2,3-dioxygenases. Km and Kd for DHB were 22 +/- 2 and 8 +/- 1 microM, respectively. DHBD was subject to reversible substrate inhibition and mechanism-based inactivation. In air-saturated buffer, the partition ratios of catecholic substrates substituted at C-3 were inversely related to their apparent specificity constants. Small organic molecules that stabilized DHBD most effectively also inhibited the cleavage reaction most strongly. The steady-state kinetic data and crystallographic results suggest that the stabilization and inhibition are due to specific interactions between the organic molecule and the active site of the enzyme. t-Butanol stabilized the enzyme and inhibited the cleavage of DHB in a mixed fashion, consistent with the distinct binding sites occupied by t-butanol in the crystal structures of the substrate-free form of the enzyme and the enzyme-DHB complex. In contrast, crystal structures of complexes with catechol and 3-methylcatechol revealed relationships between the binding of these smaller substrates and t-butanol that are consistent with the observed competitive inhibition.  相似文献   

9.
Recombinant Herpes Simplex Virus Type 1 thymidine kinase (TK) was isolated in a fast and gentle two-step procedure from Escherichia coli as a thrombin cleavable fusion protein. The TK was expressed as an inducible glutathione S-acetyl transferase fusion protein and purified in a first step by glutathione affinity chromatography. Proteolytic cleavage of the column bound TK with thrombin led to a truncated enzyme, resulting from two new and hitherto unknown cleavage sites, determined by N-terminal sequencing. In a second step, the TK was further purified from the cleavage products by ATP affinity chromatography, yielding homogeneously pure TK as shown by SDS-PAGE and mass spectrometry. Both the fusion protein and the purified enzyme show enzymatic activity with the same Km value of 0.2 microM for the natural substrate thymidine. Determination of the native molecular weight indicated that the pure enzyme and the fusion protein are biologically active as homodimers. Therefore the recombinant enzyme has the same biochemical characteristics as the viral TK, expressed in infected cells.  相似文献   

10.
A membrane-bound protease induced by sulfur mustard in cultured normal human epidermal keratinocytes (NHEK) was purified and partially characterized. Maximum enzyme stimulation occurred at 16 hr after normal human epidermal keratinocytes were exposed to 300 microM sulfur mustard. Purification to homogeneity of the protease was accomplished by Triton X-100 solubilization, ultracentrifugation, and dialysis, followed by ion-exchange chromatography through DEAE-cellulose and finally hydrophobic column chromatography through phenyl Sepharose. Analysis of the purified enzyme by SDS-PAGE revealed a single polypeptide at the 80 kDa region. Further investigation of biochemical properties showed that a synthetic serine-specific Chromozym TRY peptide and the physiological protein laminin were good substrates for this enzyme. Moreover, this enzyme was inhibited mostly by the serine-protease inhibitors leupeptin and di-isopropyl fluorophosphate and not by the cysteine protease inhibitor E-64 or the metalloprotease inhibitor 1,10-phenanthroline (Component H, CH), indicating the serine protease nature of this enzyme. This enzyme had a pH optimum in the range of 7.0 to 8.0. Amino acid sequencing of the purified enzyme revealed that this enzyme belongs to the endopeptidase family (serine protease), and is homologous with a mammalian-type bacterial serine endopeptidase that can preferentially cleave K-X, including K-P. These results suggest that serine-protease stimulation may be one of the mechanisms of mustard-induced skin blister formation, and that some specific serine-protease inhibitors may be useful for the treatment of this sulfur mustard toxicity.  相似文献   

11.
The transmembrane PTPase HPTP beta differs from its related family members in having a single rather than a tandemly duplicated cytosolic catalytic domain. We have expressed the 354-amino acid, 41-kDa human PTP beta catalytic fragment in Escherichia coli, purified it, and assessed catalytic specificity with a series of pY peptides. HPTP beta shows distinctions from the related LAR PTPase and T cell CD45 PTPase domains: it recognizes phosphotyrosyl peptides of 9-11 residues from lck, src, and PLC gamma with Km values of 2, 4, and 1 microM, some 40-200-fold lower than the other two PTPases. With kcat values of 30-205 s-1, the catalytic efficiency, kcat/Km, of the HPTP beta 41-kDa catalytic domain is very high, up to 5.7 x 10(7) M-1 s-1. The peptides corresponding to PLC gamma (766-776) and EGFR (1,167-1,177) phosphorylation sites were used for structural variation to assess pY sequence context recognition by HPTP beta catalytic domain. While exchange of the alanine residue at the +2 position of the PLC gamma (Km of 1 microM) peptide to lysine or aspartic acid showed little or no effect on substrate affinity, replacement by arginine increased the Km 35-fold. Similarly, the high Km value of the EGFR pY peptide (Km of 104 microM) derives largely from the arginine residue at the +2 position of the peptide, since arginine to alanine single mutation at the -2 position of the EGFR peptide decreased the Km value 34-fold to 3 microM. Three thiophosphotyrosyl peptides have been prepared and act as substrates and competitive inhibitors of these PTPase catalytic domains.  相似文献   

12.
PTPH1 is a human protein-tyrosine phosphatase with homology to the band 4.1 superfamily of cytoskeleton-associated proteins. Here, we report the purification and biochemical characterization of this enzyme from baculovirus-infected insect cells. The purified protein exhibited an apparent M(r) of 120,000 on SDS gels. The native enzyme dephosphorylated both myelin basic protein (MBP) and reduced, carboxamidomethylated, and maleylated lysozyme (RCML) but was over 5-fold more active on MBP. The Km values for the two substrates were similar (1.45 microM for MBP and 1.6 microM for RCML). Phosphorylation of PTPH1 by protein kinase C in vitro resulted in a decrease in Km but had no effect on Vmax. Removal of the NH2-terminal band 4.1 homology domain of PTPH1 by limited trypsin cleavage stimulated dephosphorylation of RCML but inhibited its activity toward MBP. The dephosphorylation of RCML by full-length PTPH1 was enhanced up to 6-fold by unphosphorylated MBP and increasing ionic strength up to 0.2 M NaCl, whereas trypsinized preparations of PTPH1 containing the isolated catalytic domain were unaffected. These results suggest that in addition to a potential role in controlling subcellular localization, the NH2-terminal band 4.1 homology domain of PTPH1 may exert a direct effect on catalytic function.  相似文献   

13.
The nonstructural protein NS3 of the hepatitis C virus (HCV) harbors a serine protease domain that is responsible for most of the processing events of the nonstructural region of the polyprotein. Its inhibition is presently regarded as a promising strategy for coping with the disease caused by HCV. In this work, we show that the NS3 protease undergoes inhibition by the N-terminal cleavage products of substrate peptides corresponding to the NS4A-NS4B, NS4B-NS5A, and NS5A-NS5B cleavage sites, whereas no inhibition is observed with a cleavage product of the intramolecular NS3-NS4A junction. The Ki values of the hexamer inhibitory products [Ki(NS4A) = 0.6 microM, Ki(NS5A) = 1.4 microM, and Ki(NS4B) = 180 microM] are lower than the Km values of the respective substrate peptides [Km(NS4A-NS4B) = 10 microM, Km(NS5A-NS5B) = 3.8 microM, and Km(NS4B-NS5A) > 1000 microM]. Mutagenesis experiments have identified Lys136 as an important determinant for product binding. The phenomenon of product inhibition can be exploited to optimize peptide inhibitors of NS3 protease activity that may be useful in drug development.  相似文献   

14.
N-arginine dibasic convertase cleaves polypeptides between paired basic residues containing the sequence Arg-Arg or Arg-Lys. The enzyme contains a large anionic domain, which in the rat enzyme consists of 57 acidic residues out of a stretch of 76 amino acids. Polyamines modulate the activity of the enzyme presumably by binding at the anionic domain (Csuhai et al. (1995) Biochemistry 34, 12411-12419). In this study a kinetic analysis of the effect of salts and amines, particularly the polyamine spermine, on the rat enzyme was studied. Simple salts were inhibitory with no apparent specificity for the anion or cation. Inhibition resulted in an increased Km and a decreased Vmax. Evidence that amines bind to an anionic domain was obtained by the finding that N,N-bis [2-hydroxyethyl]-2-aminoethanesulfonic acid, which is structurally related to the inhibitory amine triethanolamine, is noninhibitory. Inhibition exhibited a complex dependence on spermine concentration. The data fit a model in which enzyme-spermine and enzyme-(spermine)2 complexes are formed. A pH-independent Kd ( approximately 0.1 microM) was obtained for enzyme-spermine formation, while enzyme-(spermine)2 formation was dependent on pH; Kd at pH 6.5 = 1 microM and a Kd at pH 8 = approximately 16 microM. Direct binding of spermine was demonstrated by the ability of spermine to increase the thermal stability of the enzyme. The concentration dependence for the spermine-induced increase in thermal stability fits a model in which formation of the enzyme-spermine complex is sufficient to account for the observed changes.  相似文献   

15.
16.
In this study we describe the partial purification and characterization of the HeLa cell oligopeptidase M or endopeptidase 3.4.24.16. The HeLa enzyme was isolated initially by its ability to hydrolyse a nonapeptide substrate (P9) which was cognate to the N-terminal cleavage site of preproTGF alpha. The enzyme was shown to be a metalloprotease as it was inhibited by Zn(2+)-chelating agents and DTT, and had an approximate molecular weight of 55-63 kD determined by gel filtration. Neurotensin, dynorphin A1-17 and GnRH1-9 were rapidly degraded by the enzyme while GnRH1-10 and somatostatin were not. Neurotensin was cleaved at the Pro10-Tyr11 bond, leading to the formation of neurotensin (1-10) and neurotensin (11-13). The K(m) for neurotensin cleavage was 7 microM and the Ki for the specific 24.16 dipeptide inhibitor (Pro-ile) was 140 microM which were similar to those observed from the human brain enzyme [Vincent et al. (1996): Brain Res 709:51-58]. Through the use of specific antibodies, the purified HeLa enzyme was shown to be oligopeptidase M. This enzyme and its closely related family member thimet oligopeptidase were shown to co-elute during the isolation procedure but were finally separated using a MonoQ column. Oligopeptidase M is located mainly in mitochondria though it was detected on the plasma membrane in an inactive form. The results obtained demonstrate the first recorded instance of this enzyme in human tissue cultured cells, and raise the issue of its function therein.  相似文献   

17.
Pyrococcus furiosus is a hyperthermophilic archaeon which grows optimally near 100 degreesC by fermenting peptides and sugars to produce organic acids, CO2, and H2. Its growth requires tungsten, and two different tungsten-containing enzymes, aldehyde ferredoxin oxidoreductase (AOR) and glyceraldehyde-3-phosphate ferredoxin oxidoreductase (GAPOR), have been previously purified from P. furiosus. These two enzymes are thought to function in the metabolism of peptides and carbohydrates, respectively. A third type of tungsten-containing enzyme, formaldehyde ferredoxin oxidoreductase (FOR), has now been characterized. FOR is a homotetramer with a mass of 280 kDa and contains approximately 1 W atom, 4 Fe atoms, and 1 Ca atom per subunit, together with a pterin cofactor. The low recovery of FOR activity during purification was attributed to loss of sulfide, since the purified enzyme was activated up to fivefold by treatment with sulfide (HS-) under reducing conditions. FOR uses P. furiosus ferredoxin as an electron acceptor (Km = 100 microM) and oxidizes a range of aldehydes. Formaldehyde (Km = 15 mM for the sulfide-activated enzyme) was used in routine assays, but the physiological substrate is thought to be an aliphatic C5 semi- or dialdehyde, e.g., glutaric dialdehyde (Km = 1 mM). Based on its amino-terminal sequence, the gene encoding FOR (for) was identified in the genomic database, together with those encoding AOR and GAPOR. The amino acid sequence of FOR corresponded to a mass of 68.7 kDa and is highly similar to those of the subunits of AOR (61% similarity and 40% identity) and GAPOR (50% similarity and 23% identity). The three genes are not linked on the P. furiosus chromosome. Two additional (and nonlinked) genes (termed wor4 and wor5) that encode putative tungstoenzymes with 57% (WOR4) and 56% (WOR5) sequence similarity to FOR were also identified. Based on sequence motif similarities with FOR, both WOR4 and WOR5 are also proposed to contain a tungstobispterin site and one [4Fe-4S] cluster per subunit.  相似文献   

18.
Aminopeptidase N (EC 3.4.11.2) is an important enzyme that is involved in the degradation of regulatory peptides including enkephalins. We report here that purified and native membrane-bound aminopeptidase N will sequentially and completely hydrolyze both Leu-enkephalin and Met-enkephalin from the amino terminus. Both purified pig aminopeptidase N and the enzyme on live HL60 cells displayed similar Km values for enkephalin. The naturally occurring neuropeptides substance P and bradykinin, and the morphine agonist, morphiceptin, were not hydrolyzed by aminopeptidase N and each inhibited the enzymatic activity. Each of these peptides contains a proline at the second residue. The Ki values for substance P (0.44 microM), bradykinin (9.4 microM), and morphiceptin (169 microM) were obtained with the enzyme on live HL60 cells. The values for the purified enzyme from pig were similar. The potent inhibition of aminopeptidase N by substance P and bradykinin suggests that these peptides may be natural inhibitors of the enzyme.  相似文献   

19.
The maltose-regulated mlr-2 gene from the hyperthermophilic archaeon Pyrococcus furiosus having homology to bacterial and eukaryal prolyl endopeptidase (PEPase) was cloned and overexpressed in Escherichia coli. Extracts from recombinant cells were capable of hydrolyzing the PEPase substrate benzyloxycarbonyl-Gly-Pro-p-nitroanilide (ZGPpNA) with a temperature optimum between 85 and 90 degrees C. Denaturing gel electrophoresis of purified PEPase showed that enzyme activity was associated with a 70-kDa protein, which is consistent with that predicted from the mlr-2 sequence. However, an apparent molecular mass of 59 kDa was obtained from gel permeation studies. In addition to ZGPpNA (K(Mapp) of 53 microM), PEPase was capable of hydrolyzing azocasein, although at a low rate. No activity was detected when ZGPpNA was replaced by substrates for carboxypeptidase A and B, chymotrypsin, subtilisin, and neutral endopeptidase. N-[N-(L-3-trans-Carboxirane-2-carbonyl)-L-Leu]-agmatine (E-64) and tosyl-L-Lys chloromethyl ketone did not inhibit PEPase activity. Both phenylmethylsulfonyl fluoride and diprotin A inhibited ZGPpNA cleavage, the latter doing so competitively (K(lapp) of 343 microM). At 100 degrees C, the enzyme displayed some tolerance to sodium dodecyl sulfate treatment. Stability of PEPase over time was dependent on protein concentration; at temperatures above 65 degrees C, dilute samples retained most of their activity after 24 h while the activity of concentrated preparations diminished significantly. This decrease was found to be due, in part, to autoproteolysis. Partially purified PEPase from P. furiosus exhibited the same temperature optimum, molecular weight, and kinetic characteristics as the enzyme overexpressed in E. coli. Extracts from P. furiosus cultures grown in the presence of maltose were approximately sevenfold greater in PEPase activity than those grown without maltose. Activity could not be detected in clarified medium obtained from maltose-grown cultures. We conclude that mlr-2, now called prpA, encodes PEPase; the physiological role of this protease is presently unknown.  相似文献   

20.
An acidic proteinase was purified from human kidney cortex. The enzyme showed a molecular mass of 31 kDa by SDS-PAGE, 36 kDa by gel filtration, and isoelectric points of 5.2 and 6.1. The optimum pH for hydrolysis of bovine hemoglobin was about 3.5. Reverse-phase HPLC analysis of the incubation mixture of the enzyme with human plasma showed the presence of an active peptide on rat uterus muscle with the same retention time as the methionyl-lysyl-bradykinin (MLBK) standard. The specific activities were 2.91 micrograms MLBK equivalent mg-1.min-1 at pH 3.5 and 2.15 micrograms MLBK equivalent mg-1.min-1 at pH 6.0. All the enzymatic activities of this human kidney proteinase were inhibited by pepstatin A. Intramolecularly quenched fluorogenic substrates with amino acid sequences of human kininogen were used to determine the cleavage points. On the N-terminal sequences (Abz-Leu-Met-Lys-Arg-Pro-Eddnp and Abz-Met-Ile-Ser-Leu-Met-Lys-Arg-Pro-Eddnp) the cleavage occurred at the Leu-Met linkage, and on the C-terminal sequences (Abz-Phe-Arg-Ser-Ser-Arg-Eddnp and Abz-Phe-Arg-Ser-Ser-Arg-Gln-Eddnp) the cleavage occurred at the Arg-Ser linkage. Abz-Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg-Ser-Ser-Arg-Gln-Eddnp++ + was hydrolyzed by the renal acidic proteinase and yielded the peptide Abz-Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg (Abz-bradykinin). Kinectic parameters were determined using Abz-Met-Ile-Ser-Leu-Met-Lys-Arg-Pro-Eddnp (K(m) = 0.69 +/- 0.08 microM; Kcat = 0.052 +/- 0.0095 s-1; Kcat/K(m) = 0.075 +/- 0.005 microM-1.s-1) and Abz-Phe-Arg-Ser-Ser-Arg-Gln-Eddnp (K(m) = 1.56 +/- 0.16 microM; Kcat = 0.0048 +/- 0.0001 s-1; Kcat/K(m) = 0.003 +/- 0.0003 microM-1.s-1). Human liver cathepsin D had no activity on C-terminal sequences and human pepsin hydrolyzed them at the Ser-Ser bond. The results suggest that the renal acid proteinase is distinct from human pepsin and human liver cathepsin D and releases MLBK from human kininogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号