首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
本文通过定向凝固试验,研究过共晶高铬铸铁的凝固过程和凝固组织,并分析了初晶碳化物的生长过程和分布状态。结果表明,过共晶高铬铸铁中初晶碳化物和共晶碳化物均为(Fe·Cr)7C3型碳化物:初晶碳化物以包抄方式生长,其横截面呈六角形块状;随着凝固速度增加,初晶碳化物的平均直径和片间距均减小。  相似文献   

2.
采用液态金属冷却的高温度梯度定向凝固设备,研究了RE对高铬铸铁定向凝固组织和力学性能的影响.研究表明,稀土主要位于高铬铸铁的基体组织中,随凝固速度的增加,稀土在基体中的含量增加;稀土对高铬铸铁定向凝固组织中的碳化物具有细化作用,并随凝固速度的增加,定向凝固高铬铸铁组织细化程度提高,同时稀土的加入使高铬铸铁的抗拉强度明显提高.  相似文献   

3.
在高铬铸铁的凝固过程中,凝固速度的变化会影响初晶碳化物和共晶碳化物的析出,并由此影响高铬铸铁的硬度、强度和耐磨性。试验利用定向凝固装置,研究凝固速度对初晶碳化物体积分数的影响及凝固速度与共晶高铬铸铁的宏观硬度、抗拉强度及耐磨性之间的关系。试验研究得出定向凝固过共晶高铬铸铁的磨损量仅为普通高铬铸铁的三分之一。  相似文献   

4.
用质量损失法对Cr33和Cr38铸铁进行了两方面实验研究:一是静态强碱条件下的腐蚀,研究材料强碱腐蚀时的特性;另一是动态下的磨损腐蚀实验,研究材料在受到磨损和高温强碱腐蚀共同作用时的特性.研究结果表明:在静态强碱腐蚀条件下,Cr38铸铁的腐蚀率高于Cr33铸铁;而在动态条件下,Cr38铸铁抗磨蚀性能优于Cr33铸铁,且此两种高铬铸铁与商业耐磨铸铁Cr26的相对耐磨性分别为1.086和1.184.  相似文献   

5.
综述了高铬铸铁的基体组织和碳化物,介绍了近年来国内外研究学者最常用的提高高铬铸铁力学性能的方法:热处理和合金化。发现高铬铸铁的高磨损性能及其他力学性能主要取决于共晶碳化物的数量、类型及基体组织。可通过热处理、合金化等方法,在高铬铸铁凝固过程中改变高铬铸铁的基体结构、改善碳化物的形貌、控制碳化物的生长等方面对高铬铸铁的性能进行优化。最后,对未来的研究方向提出了展望。  相似文献   

6.
提高高铬白口铸铁件性能的研究与生产实践   总被引:3,自引:3,他引:3  
要提高高铬铸铁的韧性和抗冲击磨损能力,除改善共晶碳化物形态和分布外,更重要的是采用综合变质处理细化共晶碳化物,净化晶界,合理选择基体组织、化学成分和热处理工艺。共晶成分或稍微过共晶成分的高铬铸铁显示良好的抗冲击磨料磨损能力,而添加W、Nb等提高抗冲击磨损能力不明显。研究发现,不同C、Cr含量的3C-21Cr系高铬铸铁的最佳奥氏体化温度和最高峰值硬度不一样;回火温度接近或超过430℃对冲击磨损影响较明显,但对冲击韧度影响甚小。研制了3C-21Cr高铬铸铁与各种碳素钢、合金钢组成的双金属锤头,其使用寿命比3C-27Cr高铬铸铁与钢复合的锤头延长50%~60%。  相似文献   

7.
氧化铝矿用渣浆泵过流件高铬铸铁Cr28的腐蚀磨损性能   总被引:2,自引:0,他引:2  
蒋业华  李祖来  戚亭  周荣 《铸造技术》2006,27(4):333-336
针对氧化铝矿渣浆泵过流件使用工况,设计了一种新型的过流件高铬铸铁材料Cr28,研究了铸态和热处理态材料的组织和性能。结果表明:热处理后组织与铸态组织相比,碳化物分布趋于弥散细小,冲击韧度和硬度都有较大的提高。腐蚀磨损实验结果表明:铸态和热处理态Cr28的腐蚀磨损性能与Cr15Mo3相比都有显著地提高,其中热处理态Cr28试样的磨蚀失重率最低,相对耐磨性为1.95。采用定量分析的方法对材料的磨蚀磨损交互作用进行研究表明:在腐蚀磨损过程中磨损对腐蚀的促进作用很大,占到腐蚀分量的99%以上,而腐蚀对磨损的促进作用较为有限,均低于腐蚀分量的23%。Cr15Mo3和热处理态Cr28试样的磨损增量和纯磨损量均随其硬度的升高而降低,而铸态Cr28试样硬度低于Cr15Mo3试样,但是磨损增量和纯磨损量也较低。  相似文献   

8.
黄伟 《金属热处理》2020,45(5):266-271
针对氧化铝行业中常用的Cr28和Cr20高铬铸铁伞帽在相同工况条件下的磨损机理进行分析,并对比研究了实际生产中两种失效材料的成分、组织及性能。结果表明,伞帽部件在高温强碱腐蚀条件下受到外界冲刷时,磨损量由微切削磨损与变形磨损这两种机制共同决定。含铬量较高的Cr28高铬铸铁,其冲刷和抗腐蚀磨损性能均优于Cr20高铬铸铁。伞帽服役寿命主要受浆料和表层的铸铁材料两大因素影响。两种试验材料经淬火+回火处理后,基体组织中主要为回火马氏体+M7C3型碳化物+少量残留奥氏体,其中含铬量较高的Cr28高铬铸铁中共晶碳化物含量更高,且分布更加弥散,其平均硬度值为64.0 HRC,高于Cr20高铬铸铁的60.2 HRC。最终确定Cr28高铬铸铁作为伞帽材质更能满足氧化铝生产及设备检修周期的需要。  相似文献   

9.
在中温三体磨损工况下,研究了含钼镍高铬铸铁的磨损性能以及钼对高铬铸铁组织、结构和力学性能的影响规律。实验表明,含钼镍高铬铸铁的磨损方式主要为显微切削、犁沟及部分塑性变形引起的剥落和碳化物断裂。钼含量为1.27%试样的显微组织中碳化物细小且分布较为均匀致密,对基体有很好的保护作用,硬度达64.4 HRC,具有最佳的中温三体磨损性能。  相似文献   

10.
《铸造技术》2019,(2):156-160
高铬铸铁可以看成是由增强相和基体相组成的颗粒增强复合材料,从材料复合的角度对高铬铸铁磨料磨损进行了分析。结果表明:高铬铸铁中碳化物保护基体减少受磨料冲击和磨损,基体固定和支撑碳化物以免碳化物失稳或被拔出;碳化物尺寸太小容易被冲断或被连根挖出,尺寸太大脆断倾向大;碳化物间距过大,磨料落在基体上的机率增大,间距过小时又使得基体难于固定和支撑;碳化物体积分数过小不耐磨,过大会使基体过于弱化;不同组织类型的基体性能差异很大,其中马氏体基体最耐磨但韧性差。结合分析结果,综述了高铬铸铁中碳化物和基体的主要控制方法。  相似文献   

11.
In as-welded state, each region of 2219 aluminum alloy TIG-welded joint shows diff erent microstructure and microhardness due to the diff erent welding heat cycles and the resulting evolution of second phases. After the post-weld heat treatment, both the amount and the size of the eutectic structure or θ phases decreased. Correspondingly, both the Cu content in α-Al matrix and the microhardness increased to a similar level in each region of the joint, and the tensile strength of the entire joint was greatly improved. Post-weld heat treatment played the role of solid solution strengthening and aging strengthening. After the post-weld heat treatment, the weld performance became similar to other regions, but weld reinforcements lost their reinforcing eff ect on the weld and their existence was more of an adverse eff ect. The joint without weld reinforcements after the post-weld heat treatment had the optimal tensile properties, and the specimens randomly crack in the weld zone.  相似文献   

12.
After nearly two years' tense construction, the first phase of industrialized base of Shenyang Research Institute of Foundry (SRIF), located at the Tiexi Casting and Forging Industrial Park in the west of Tiexi District, has now been completed and formally put into operation.  相似文献   

13.
Institute of Process Engineering, Chinese Academy of Sciences, China, has proposed a method for oxidative leaching of chromite with potassium hydroxide. Understanding the mechanism of chromite decomposition, especially in the potassium hydroxide fusion, is important for the optimization of the operating parameters of the oxidative leaching process. A traditional thermodynamic method is proposed and the thermal decomposition and the reaction decomposition during the oxidative leaching of chromite with KOH and oxygen is discussed, which suggests that chromite is mainly destroyed by reactions with KOH and oxygen. Meanwhile, equilibrium of the main reactions of the above process was calculated at different temperatures and oxygen partial pressures. The stable zones of productions, namely, K2CrO4 and Fe2O3, increase with the decrease of temperature, which indicates that higher temperature is not beneficial to thermodynamic reactions. In addition, a comparison of the general alkali methods is carried out, and it is concluded that the KOH leaching process is thermodynamically superior to the conventional chromate production process.  相似文献   

14.
The effect of isochronal heat treatments for 1h on variation of damping, hardness and microstructural change of the magnesium wrought alloy AZ61 was investigated. Damping and hardness behaviour could be attributed to the evolution of precipitation process. The influence of precipitation on damping behaviour was explained in the framework of the dislocation string model of Granato and Lücke.  相似文献   

15.
The Lanthanum-doped bismuth ferrite–lead titanate compositions of 0.5(Bi LaxFe1-xO3)–0.5(Pb Ti O3)(x = 0.05,0.10,0.15,0.20)(BLxF1-x-PT) were prepared by mixed oxide method.Structural characterization was performed by X-ray diffraction and shows a tetragonal structure at room temperature.The lattice parameter c/a ratio decreases with increasing of La(x = 0.05–0.20) concentration of the composites.The effect of charge carrier/ion hopping mechanism,conductivity,relaxation process and impedance parameters was studied using an impedance analyzer in a wide frequency range(102–106Hz) at different temperatures.The nature of Nyquist plot confirms the presence of bulk effects only,and non-Debye type of relaxation processes occurs in the composites.The electrical modulus exhibits an important role of the hopping mechanism in the electrical transport process of the materials.The ac conductivity and dc conductivity of the materials were studied,and the activation energy found to be 0.81,0.77,0.76 and 0.74 e V for all compositions of x = 0.05–0.20 at different temperatures(200–300 °C).  相似文献   

16.
The orientation relationships(ORs)between the martensite and the retained austenite in low-and medium-carbon steels after quenching–partitioning–tempering process were studied in this work.The ORs in the studied steels are identified by selected-area electron diffraction(SAED)as either K–S or N–W ORs.Meanwhile,the ORs were also studied based on numerical fitting of electron backscatter diffraction data method suggested by Miyamoto.The simulated K–S and N–W ORs in the low-index directions generally do not well coincide with the experimental pole figure,which may be attributed to both the orientation spread from the ideal variant orientations and high symmetry of the low-index directions.However,the simulated results coincide well with experimental pole figures in the high-index directions{123}_(bcc).A modified method with simplicity based on Miyamoto’s work was proposed.The results indicate that the ORs determined by modified method are similar to those determined by Miyamoto’method,that is,the OR is near K–S OR for the low-carbon Q–P–T steel,and with the increase of carbon content,the OR is closer to N–W OR in medium-carbon Q–P–T steel.  相似文献   

17.
This work was to reveal the residual stress profile in electron beam welded Ti-6Al-4V alloy plates(50 mm thick) by using finite element and contour measurement methods.A three-dimensional finite element model of 50-mmthick titanium component was proposed,in which a column–cone combined heat source model was used to simulate the temperature field and a thermo-elastic–plastic model to analyze residual stress in a weld joint based on ABAQUS software.Considering the uncertainty of welding simulation,the computation was calibrated by experimental data of contour measurement method.Both test and simulated results show that residual stresses on the surface and inside the weld zone are significantly different and present a narrow and large gradient feature in the weld joint.The peak tensile stress exceeds the yield strength of base materials inside weld,which are distinctly different from residual stress of the thin Ti-6Al-4V alloy plates presented in references before.  相似文献   

18.
Silicon carbide nanoparticle-reinforced nickel-based composites(Ni–Si CNP),with a Si CNPcontent ranged from1 to 3.5 wt%,were prepared using mechanical alloying and spark plasma sintering.In addition,unreinforced pure nickel samples were also prepared for comparative purposes.To characterize the microstructural properties of both the unreinforced pure nickel and the Ni–Si CNPcomposites transmission electron microscopy(TEM) was used,while their mechanical behavior was investigated using the Vickers pyramid method for hardness measurements and a universal tensile testing machine for tensile tests.TEM results showed an array of dislocation lines decorated in the sintered pure nickel sample,whereas,for the Ni–Si CNPcomposites,the presence of nano-dispersed Si CNPand twinning crystals was observed.These homogeneously distributed Si CNPwere found located either within the matrix,between twins or on grain boundaries.For the Ni–Si CNPcomposites,coerced coarsening of the Si CNPassembly occurred with increasing Si CNPcontent.Furthermore,the grain sizes of the Ni–Si CNPcomposites were much finer than that of the unreinforced pure nickel,which was considered to be due to the composite ball milling process.In all cases,the Ni–Si CNPcomposites showed higher strengths and hardness values than the unreinforced pure nickel,likely due to a combination of dispersion strengthening(Orowan effects) and particle strengthening(Hall–Petch effects).For the Ni–Si CNPcomposites,the strength increased initially and then decreased as a function of Si CNPcontent,whereas their elongation percentages decreased linearly.Compared to all materials tested,the Ni–Si CNPcomposite containing 1.5% Si C was found more superior considering both their strength and plastic properties.  相似文献   

19.
A new method was introduced to achieve directional growth of Sn crystals. Microstructures in liquid(Pb)/liquid(Sn) diffusion couples were investigated under various static magnetic fields. Results show that the β-Sn crystals mainly reveal an irregular dendritic morphology without or with a relatively low static magnetic field(B0.3 T). When the magnetic field is increased to 0.5 T, the β-Sn dendrites close to the final stage of growth begin to show some directional character. With a further increase in the magnetic field to a higher level(0.8–5 T), the β-Sn dendrites have an enhanced directional growth character, but the dendrites show a certain deflection. As the magnetic field is increased to 12 T, the directional growth of the β-Sn dendrites in the center of the couple is severely destroyed. The mechanism of the directional growth of the β-Sn crystals and the deflection of the β-Sn crystals with the application of static magnetic field was tentatively discussed.  相似文献   

20.
韩磊 《腐蚀与防护》2015,36(1):84-90,94
综述了常见的电化学噪声数据处理方法,介绍了直流趋势剔除、统计分析、快速傅立叶变换(FFT)法计算功率谱密度(PSD)以及小波变换处理电化学噪声信号的基本过程,并阐释了各种数学处理及所得参数的物理意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号