首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
李哲洋  董逊  张岚  陈刚  柏松  陈辰 《半导体学报》2008,29(7):1347-1349
利用水平热壁式CVD外延生长技术,在75mm偏向1120方向4°的(0001)Si-面n型导电衬底上同质外延生长了4H-SiC薄膜.光学显微镜和原子力显微镜测试结果表明外延层表面存在三角形、胡萝卜状等典型的4°偏轴外延缺陷及普遍的台阶形貌.通过优化外延参数,片内浓度均匀性(σ/mean)和厚度均匀性分别达到4.37%和l.81%.  相似文献   

2.
利用水平热壁式CVD外延生长技术,在75mm偏向〈1120〉方向4°的(0001)Si-面n型导电衬底上同质外延生长了4H-SiC薄膜.光学显微镜和原子力显微镜测试结果表明外延层表面存在三角形、胡萝卜状等典型的4°偏轴外延缺陷及普遍的台阶形貌.通过优化外延参数,片内浓度均匀性(σ/mean)和厚度均匀性分别达到4.37%和1.81%.  相似文献   

3.
《微纳电子技术》2019,(5):414-418
采用化学气相沉积(CVD)的方法在直径100 mm4°偏角衬底上生长4HN-SiC同质外延片,研究工艺生长温度对外延层表面缺陷的影响,并使用金相显微镜、表面缺陷测试设备、汞探针和红外膜厚仪进行分析和表征。结果表明,工艺生长温度由1 550℃增加到1 620℃,外延层表面的三角形缺陷密度可降低至0.39 cm~(-2);但随着工艺生长温度的增加,导致外延层边缘的台阶聚集数量和长度也急剧增加。在高生长温度下,外延层表面三角缺陷减少以及边缘台阶聚集增加的原因为:一是衬底表面原子迁移率的增加,减少了衬底表面2D生长;二是硅原子的气相成核受到抑制;三是〈1100〉和〈1120〉方向横向生长速率的差异加剧。综上结果,采用1 550℃生长工艺可在高生长速率下制备厚度均匀性和掺杂浓度均匀性分别为1.44%和1.92%的高质量4HN-SiC同质外延片。  相似文献   

4.
李珣  朱松冉  姜霞 《半导体技术》2021,46(8):635-639,644
4H-SiC外延薄膜是加工高频、大功率电子电力器件的理想半导体材料,而使用不同斜切角的衬底进行外延生长的工艺不同.在1.2°小切角的4H-SiC离轴衬底上采用化学气相沉积(CVD)法生长同质外延薄膜.为了改善外延薄膜的表面形貌,对生长温度、原位表面处理和C/Si比这三个重要的生长参数进行了优化.利用光学显微镜和原子力显微镜(AFM)观察外延薄膜的表面形貌,发现较高的生长温度和较低的C/Si比可以有效降低缺陷密度和表面粗糙度.在生长前使用硅烷气体进行原位表面处理可以有效减小外延薄膜表面的台阶聚束效应.低温光致发光测试表明生长的外延薄膜质量良好.  相似文献   

5.
使用三氯硅烷(TCS)作为含氯生长源,在多片外延设备生长了高质量的4H-SiC外延材料.研究了原位预刻蚀气体HCl流量和刻蚀时间对SiC外延材料表面三角形缺陷的影响,使用光学显微镜和表面缺陷分析仪对SiC外延材料表面缺陷进行表征测试和统计,使用傅里叶红外测试仪(FTIR)和原子力显微镜(AFM)对外延材料表面形貌进行表征.结果表明,预刻蚀气体体积流量和时间对4英寸SiC外延材料表面三角形缺陷影响明显,随着HCl体积流量和时间的增加,材料表面的三角形缺陷密度先减小后增加,在HCl流量为100 mL/min、刻蚀时间为20 min时,三角形缺陷密度最低达到0.47cm-2.此外,通过调整C/Si比和载气体积流量等参数,使4英寸SiC外延材料掺杂浓度不均匀性和厚度不均匀性均得到有效改善,结果表明该外延片质量满足SiC电力电子器件的应用.  相似文献   

6.
利用水平热壁CVD法生长的3C-SiC/Si的均匀性   总被引:1,自引:1,他引:0  
利用新改进的水平低压热壁CVD设备,改变生长时的压力和H2流速,在50mm的Si(100)和(111)衬底上获得了3C-SiC外延膜,并对外延膜的结构均匀性、电学均匀性和厚度均匀性进行了分析.X射线衍射图中出现了强的3C-SiC的特征峰,其中3C-SiC的(200)和(111)峰的半高宽分别为0.41°和0.21°.3C-SiC外延膜方块电阻的均匀性最好可达2.15%.厚度均匀性可达±5.7%(σ/mean值).  相似文献   

7.
利用新改进的水平低压热壁CVD设备,改变生长时的压力和H2流速,在50mm的Si(100)和(111)衬底上获得了3C-SiC外延膜,并对外延膜的结构均匀性、电学均匀性和厚度均匀性进行了分析.X射线衍射图中出现了强的3C-SiC的特征峰,其中3C-SiC的(200)和(111)峰的半高宽分别为0.41°和0.21°.3C-SiC外延膜方块电阻的均匀性最好可达2.15%.厚度均匀性可达±5.7%(σ/mean值).  相似文献   

8.
化学气相沉积(CVD)是微电子器件用SiC外延材料的主要生长技术.为了获得高质量的4H-SiC外延材料,在偏向<1120>方向8°的4H-SiC(0001)Si-面衬底上,利用台阶控制生长技术进行4H-SiC的同质外延生长.表面形貌是SiC外延材料质量好坏的一个重要参数,为此研究了表面形貌与工艺参数的关系,探讨了4H-SiC外延膜的表面缺陷形成原因.利用Raman散射技术研究了非均匀4H-SiC外延材料的多晶型现象.  相似文献   

9.
化学气相沉积(CVD)是微电子器件用SiC外延材料的主要生长技术.为了获得高质量的4H-SiC外延材料,在偏向<1120>方向8°的4H-SiC(0001)Si-面衬底上,利用台阶控制生长技术进行4H-SiC的同质外延生长.表面形貌是SiC外延材料质量好坏的一个重要参数,为此研究了表面形貌与工艺参数的关系,探讨了4H-SiC外延膜的表面缺陷形成原因.利用Raman散射技术研究了非均匀4H-SiC外延材料的多晶型现象.  相似文献   

10.
在商业化偏4°导电型4H碳化硅(SiC)衬底上采用化学气相沉积(CVD)的方法进行n型4H-SiC同质外延层生长,研究反应过程中氢气(H2)对外延生长的影响,并使用表面缺陷测试仪、汞探针和红外膜厚仪等设备对外延层进行分析和表征。结果表明,氢气体积流量由基础值80增加到120 L/min,生长速率呈先增加后降低的趋势,生长速率的增加值最大为2μm/h,但缺陷呈先减少后增加的趋势。在高温CVD外延过程中,生长速率阶段性变化的原因:一是生长速率由气相质量转移系数和表面化学反应速率共同决定;二是氢气体积流量过大时,大量的析出氢难以及时离开生长表面,不利于反应物的有效分解和再沉积过程。综上所述,采用100 L/min氢气体积流量的生长工艺可在较高生长速率下制备高质量、厚度均匀性0.91%和载流子浓度均匀性1.81%的SiC外延片。  相似文献   

11.
通过化学气相沉积法,采用不同生长工艺在4°偏角4H-SiC衬底上制备p型4H-SiC同质外延片。提出了p型4H-SiC同质外延中有效层厚度的概念,研究发现导致外延有效层厚度减少的直接原因是自掺杂效应的存在。采用傅里叶红外光谱仪(FT-IR)、汞探针电容电压(Hg-CV)和表面缺陷测试仪对p型4H-SiC同质外延片进行表征,讨论了不同工艺对外延有效层厚度的影响。结果表明,采用隔离法和阻挡层法均能提高外延有效层厚度,且掺杂浓度随距表面深度变化斜率值由1.323减小到0.073。然而,阻挡层法斜率值能进一步优化至0.050,是由于有效抑制了外延中固相和气相自掺杂。对比于优化前工艺,采用阻挡层法制备的p型4H-SiC同质外延片厚度不均匀性和表面总缺陷数量处于同一水平,掺杂浓度不均匀性由2.95%改善到2.67%。综上,采用阻挡层法能够制备出高有效层厚度、高一致性和高质量的p型4H-SiC同质外延片。  相似文献   

12.
《微纳电子技术》2020,(3):250-254
采用化学气相沉积法在4°偏角4H-SiC衬底上进行同质外延生长,并使用500℃熔融KOH对SiC衬底及外延片进行腐蚀。采用同步加速X射线衍射仪和光学显微镜对外延前后基面位错(BPD)形貌进行系统表征,分析了基面位错向刃位错转化的过程。外延生长过程中同时存在台阶流生长和侧向生长(即垂直于台阶方向)两种模式,当侧向生长模式占主导时,能够有效地抑制基面位错向外延层的延伸;当台阶流生长模式占主导时,基面位错延伸至外延层。结果表明,随着碳硅比增加,外延层基面位错密度能够降低至0.05 cm~(-2),这是由于侧向生长增强导致的。通过优化碳硅比,能够制备出高质量的4H-SiC同质外延片,其基面位错密度和表面缺陷密度分别为0.09和0.12 cm~(-2)。  相似文献   

13.
源在外延片直径方向上的耗尽导致了外延片上局部各点的生长速率及掺杂浓度是个随位置变化的量,因此造成了外延片厚度及浓度的不均匀性.通过引入基座气浮旋转可以有效降低这种不均匀性,在典型工艺条件下,采用基座旋转,76.2 mm 4H-SiC外延片厚度不均匀性、p型掺杂浓度不均匀性和n型掺杂不均匀性分别为0.21%、1.13%和...  相似文献   

14.
采用自行设计的水平冷壁低压化学气相沉积(LPCVD)方法在偏向〈1120〉晶向8°的n型4H-SiC(0001)衬底上进行了同质外延生长.在5.3×103Pa的低压下,外延膜生长速率超过3μm/h.电容-电压法测试表明在非有意掺杂外延膜中净施主浓度为8.4×10 15cm-3.Nomarski显微镜观察表明厚外延膜的表面光滑,生长缺陷密度很低.AFM测试显示表面均方根粗糙度为0.3nm,没有观察到宏观台阶结构.Raman谱线清晰锐利,表现出典型的4H-SiC特征.在低温PL谱中,近带边区域出现很强的自由激子峰,表明样品是高质量的.  相似文献   

15.
高质量快速SiC外延生长工艺技术是目前高压电力电子器件研制的关键工艺技术。采用HCl气体作为含Cl化合物,研究了不同温度、气相y(C)/y(Si)摩尔比和刻蚀工艺等对于SiC外延层质量的影响。通过优化外延工艺参数,采用原位HCl刻蚀工艺,获得了SiC单晶外延生长速率达32μm/h的快速外延生长工艺,外延层表面平滑,表面粗糙度仅0.218 nm,晶片外延层厚度不均匀性小于0.4%。  相似文献   

16.
利用课题组自主研发的热壁低压化学气相沉积(HWLPCVD)系统,在朝[11-20]方向偏转4°的(0001)Si面4H-SiC衬底上进行快速同质外延生长,研究了生长温度及氯硅比(Cl/Si比)对外延生长速率的影响机理.研究发现,外延生长速率随生长温度的提高呈线性增加,而Cl/Si比的改变对生长速率的影响不大.文章进一步探究了Cl/Si比对4H-SiC外延层表面缺陷的影响.较低的Cl/Si比(0.4~2)可以减少或消除三角缺陷,Cl/Si比较高(大于5)时,表面质量反而下降,因而,适当的Cl/Si比对于获得表面形貌良好的4H-SiC外延层至关重要.  相似文献   

17.
采用PVT法得到高纯4H-SiC体单晶。研究了0°、1°、4°晶体对晶体台阶流、晶体结晶质量、晶体缺陷、晶体电学性能的影响;晶体台阶流采用奥林巴斯显微镜进行表征,晶体缺陷采用莱卡体系显微镜进行表征,晶体结晶质量采用高分辨XRD进行表征,晶体电学性能采用非接触电阻率测试仪进行表征。实验结果表明:4°籽晶生长的晶体缺陷最少,1°与4°籽晶生长的晶体结晶质量相当,0°籽晶生长的晶体电学性能最均匀。  相似文献   

18.
本文探讨了SiCl_4/SiH_4/H_2混合源常压和低压硅外延生长技术.实验结果表明,混合源兼有SiCl_4和SiH_4两者的优点,并在一定比例下具有SiH_2Cl_2源的特性.它能降低外延生长温度、调节淀积速率,改善淀积的均匀性和抑制自掺杂效应.因此它可适应多种器件的要求.  相似文献   

19.
4H-SiC低压热壁CVD同质外延生长及特性   总被引:1,自引:1,他引:0  
为了获得高质量4H-SiC外延材料,研制出一套水平式低压热壁CVD(LP-HWCVD)生长系统,在偏晶向的4H-SiCSi(0001)晶面衬底上,利用“台阶控制生长”技术进行了4H-SiC的同质外延生长,典型生长温度和压力分别为1500℃和1.3e3Pa,生长速率控制在1.0μm/h左右.采用Nomarski光学显微镜、扫描电镜(SEM)、原子力显微镜(AFM)、X射线衍射、Raman散射以及低温光致发光测试技术,研究了4H-SiC的表面形貌、结构和光学特性以及用NH3作为n型掺杂剂的4H-SiC原位掺杂技术,并在此基础上获得了4H-SiCp-n结二极管以及它们在室温及400℃下的电致发光特性,实验结果表明4H-SiC在Si  相似文献   

20.
基于水平热壁化学气相沉积(CVD)技术,采用原位刻蚀方法,在3英寸(1英寸=2.54 cm)(0001)Si面零偏4H-SiC衬底上生长了高质量的同质外延层,并对其主要工艺参数和生长机制进行了探讨。利用微分干涉相差显微镜、喇曼散射及湿法腐蚀等表征手法对样品进行了测试分析。测量结果表明,4H-SiC占整个外延表面积的99%以上,此外,该工艺消除了4H-SiC同质外延层中的基面位错,提高了外延层的质量。同时对零偏4H-SiC衬底的同质外延的工艺过程和理论进行了研究和讨论,实验发现,生长前的原位刻蚀、初始生长参数、碳硅原子比以及生长温度对于维持外延层晶型、避免3C-SiC多型的产生具有重要影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号