首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 54 毫秒
1.
娄朝刚  严亭  孙强  许军  张晓兵  雷威 《半导体学报》2008,29(11):2088-2091
通过实验比较了砷化镓量子阱太阳能电池与不含量子阱结构的普通砷化镓太阳能电池的外量子效率. 结果表明,量子阱太阳能电池吸收光子的波长从870nm 扩展到了1000nm. 当波长小于680nm时,量子阱太阳能电池的外量子效率低于普通太阳能电池;而当波长大于于680nm时,量子阱太阳能电池的外量子效率高于普通太阳能电池. 对这个现象给出了解释,并对用量子阱太阳能电池代替三结电池的中间子电池的可能性进行了讨论.  相似文献   

2.
采用细致平衡模型计算了GaAs量子阱太阳能电池的转换效率,同时对量子阱结构带来的几种效应,如准费米能级分离、热载流子效应等进行了分析,并将碰撞离化效应引入此细致平衡模型中,通过计算研究了其对量子阱太阳能电池转换效率的影响.结果表明碰撞离化效应可以提高电池的转换效率,但提高幅度有限.  相似文献   

3.
地于半导体分别限制单量子阱激光器,为了降低阈值电流,提高外量子效率,分析和讨论了影响阈值电流和外量子效率的各种因素,并做了一定的数值计算,给出了量佳结构参数。  相似文献   

4.
采用细致平衡模型计算了GaAs量子阱太阳能电池的转换效率,同时对量子阱结构带来的几种效应,如准费米能级分离、热载流子效应等进行了分析,并将碰撞离化效应引入此细致平衡模型中,通过计算研究了其对量子阱太阳能电池转换效率的影响.结果表明碰撞离化效应可以提高电池的转换效率,但提高幅度有限.  相似文献   

5.
6.
提高LED外量子效率   总被引:2,自引:2,他引:2  
提高发光二极管的发光效率是当前的一个研究热点.简要介绍了从芯片技术角度提高发光二极管(IED)外量子效率的几种途径,生长分布布拉格反射层结构、制作透明衬底、衬底剥离技术、倒装芯片技术、表面粗化技术、异形芯片技术、采用光子晶体结构等.此外还介绍了发光材料、能带结构以及工艺对外量子效率的影响.  相似文献   

7.
高亮度发光二极管外量子效率的计算   总被引:1,自引:0,他引:1  
本文对典型结构高亮度发光二极管(HB-LED)的注入电流扩展以及器件的光输出进行了详细的理论分析,结果表明具有较厚顶层的器件容易实现注入电流的扩展,而具有较厚的底层即具有透明衬底的器件容易实现光耦合输出,因此引入较厚顶层和底层是提高LED的外量子效率的有效手段.最后分别计算出不同顶层厚度下具有吸收衬底和透明衬底的LED的外量子效率,这两类LED 最大外量子效率分别为 12.05%和20.12%.  相似文献   

8.
冯异 《光机电信息》2010,27(1):23-28
近年来,GaN基发光二极管发展迅猛,但其发光效率一直是制约LED在照明领域广泛应用的主要瓶颈。本文简要介绍了提高发光二极管外量子效率的几种途径:生长分布布喇格反射层(DBR)结构,表面粗化技术,异性芯片技术,采用光子晶体结构,倒装芯片技术,激光剥离技术,透明衬底技术等。  相似文献   

9.
10.
基于氮化镓材料的微型发光二极管(micro-LED)已逐渐成为可见光通信和下一代显示器等许多光电器件的主要发光源。由非辐射复合和量子限制斯塔克效应(QCSE)引起的低外量子效率(EQE)是微型发光二极管应用开发过程中的主要瓶颈。文章讨论了微型发光二极管低EQE的成因,分析了其物理特性,并提出了改善其EQE的优化方法。  相似文献   

11.
An attractive but challenging technology for high efficiency solar energy conversion is the intermediate band solar cell (IBSC), whose theoretical efficiency limit is 63%, yet which has so far failed to yield high efficiencies in practice. The most advanced IBSC technology is that based on quantum dots (QDs): the QD‐IBSC. In this paper, k·p calculations of photon absorption in the QDs are combined with a multi‐level detailed balance model. The model has been used to reproduce the measured quantum efficiency of a real QD‐IBSC and its temperature dependence. This allows the analysis of individual sub‐bandgap transition currents, which has as yet not been possible experimentally, yielding a deeper understanding of the failure of current QD‐IBSCs. Based on the agreement with experimental data, the model is believed to be realistic enough to evaluate future QD‐IBSC proposals.  相似文献   

12.
The cell performance of organic‐inorganic hybrid photovoltaic devices based on CdSe nanocrystals and the semiconducting polymer poly[2,6‐(4,4‐bis(2‐ethylhexyl)‐4H‐cyclopenta[2,1‐b;3,4‐b′]‐dithiophene)‐alt‐4,7‐(2,1,3‐benzothiadiazole)] (PCPDTBT) is strongly dependent on the applied polymer‐to‐nanocrystal loading ratio and the annealing temperature. It is shown here that higher temperatures for the thermal annealing step have a beneficial impact on the nanocrystal phase by forming extended agglomerates necessary for electron percolation to enhance the short‐circuit current. However, there is a concomitant reduction of the open‐circuit voltage, which arises from energy‐level alterations of the organic and the inorganic component. Based on quantum dots and PCPDTBT, we present an optimized organic–inorganic hybrid system utilizing an annealing temperature of 210 °C, which provides a maximum power conversion efficiency of 2.8%. Further improvement is obtained by blending nanocrystals of two different shapes to compose a favorable n‐type network. The blend of spherical quantum dots and elongated nanorods results in a well‐interconnected pathway for electrons within the p‐type polmer matrix, yielding maximum efficiencies of 3.6% under simulated AM 1.5 illumination.  相似文献   

13.
Semiconductor nanocrystals, the so‐called quantum dots (QDs), exhibit versatile optical and electrical properties. However, QDs possess high density of surface defects/traps due to the high surface‐to‐volume ratio, which act as nonradiative carrier recombination centers within the QDs, thereby deteriorating the overall solar cell performance. The surface passivation of QDs through the growth of an outer shell of different materials/compositions called “core/shell QDs” has proven to be an effective approach to reduce the surface defects and confinement potential, which can enable the broadening of the absorption spectrum, accelerate the carrier transfer, and reduce exciton recombination loss. Here, the recent research developments in the tailoring of the structure of core/shell QDs to tune exciton dynamics so as to improve solar cell performance are summarized. The role of band alignment of core and shell materials, core size, shell thickness/compositions, and interface engineering of core/thick shell called “giant” QDs on electron–hole spatial separation, carrier transport, and confinement potential, before and after grafting on the carrier scavengers (semiconductor/electrolyte), is described. Then, the solar cell performance based on core/shell QDs is introduced. Finally, an outlook for the rational design of core/shell QDs is provided, which can further promote the development of high‐efficiency and stable QD sensitized solar cells.  相似文献   

14.
从经验公式出发,基于T-T湮灭过程,建立了有机磷光电致发光器件中复合宽度和外量子效率的理论模型.结果表明:(1)随外加电压升高,器件的复合宽度减小,外量子效率增加;(2)随器件厚度的增加,复合宽度相应增加,但外量子效率在不同的电压下呈现不同的变化趋势;(3)外量子效率随复合电流密度的增大而显著降低.讨论了外加电压和器件厚度对复合宽度的影响,分析了外量子效率随外加电压、器件厚度及复合电流密度变化的原因.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号