首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CD39 is an enzyme which is responsible, together with CD73, for a cascade converting adenosine triphosphate into adenosine diphosphate and cyclic adenosine monophosphate, ultimately leading to the release of an immunosuppressive form of adenosine in the tumor microenvironment. Here, we first review the environmental and genetic factors shaping CD39 expression. Second, we report CD39 functions in the T cell compartment, highlighting its role in regulatory T cells, conventional CD4+ T cells and CD8+ T cells. Finally, we compile a list of studies, from preclinical models to clinical trials, which have made essential contributions to the discovery of novel combinatorial approaches in the treatment of cancer.  相似文献   

2.
Immunological memory is fundamental to maintain immunity against re-invading pathogens. It is the basis for prolonged protection induced by vaccines and can be mediated by humoral or cellular responses—the latter largely mediated by T cells. Memory T cells belong to different subsets with specialized functions and distributions within the body. They can be broadly separated into circulating memory cells, which pace the entire body through the lymphatics and blood, and tissue-resident memory T (TRM) cells, which are constrained to peripheral tissues. Retained in the tissues where they form, TRM cells provide a frontline defense against reinfection. Here, we review this population of cells with specific attention to the liver, where TRM cells have been found to protect against infections, in particular those by Plasmodium species that cause malaria.  相似文献   

3.
Malignant pleural effusion (MPE) provides a liquid tumor microenvironment model that includes cancer cells and immune cells. However, the characteristics of tumor antigen-specific CD8+ T cells have not been investigated in detail. Here, we analyzed MPE samples taken from a patient with pancreatic cancer who received a dendritic cell vaccine targeting Wilms’ Tumor 1 (WT1) antigen over the disease course (two points at MPE1st and 2nd, two months after MPE1st). Epithelial cell adhesion molecule (EpCAM)+ cancer cells (PD-L1 or T cell immunoglobulin mucin-3, TIM-3), both PD-1 or TIM-3 positive CD8+ T cells, and CD14+CD68+CD163+TIM-3+ macrophages increased from the MPE1st to MPE2nd. The ratio of WT1-specific cytotoxic lymphocytes (WT1-CTLs) to MPE CD8+ T cells and IFN-γ secretion of WT1-CTLs were reduced with disease progression. Coincidentally, the fraction of central memory T (TCM) of WT1-CTLs was decreased. On the other hand, CD8+ T cells in response to SMAD4P130L, which is homogeneously expressed in EpCAM+ cancer cells, were detected using in vitro expansion with the HLA-A*11:01 restrictive SVCVNLYH neoantigen. Furthermore, the CD8+ T cell response to SMAD4P130L was diminished following remarkably decreased numbers of CD8+ TCM in MPE samples. In conclusion, CD8+ T cells responding to WT1 or SMAD4P130L neoantigen expressed in EpCAM+ pancreatic cancer cells were detected in MPE. A tumor antigen-specific immune response would provide novel insight into the MPE microenvironment.  相似文献   

4.
Background: A keloid is a benign skin tumor that extends beyond the initial injury area, and its pathologic mechanism remains unclear. Method: High-throughput sequencing data were obtained from normal skin tissue of patients with keloids (Group N) and healthy controls (Group C). Important genes were mined by bioinformatics analysis and identified by RT–qPCR, Western blotting, immunohistochemistry and immunofluorescence assays. The CIBERSORT algorithm was used to convert gene expression information into immune cell information. Flow cytometry was used to verify the key immune cells. Fluorescence-activated cell sorting coculture and CCK8 experiments were used to explore the effect of CD8+ T cells on keloid-associated fibroblasts. Neural network models were used to construct associations among CD28, CD8+ T cells and the severity of keloids and to identify high-risk values. Result: The expression levels of costimulatory molecules (CD28, CD80, CD86 and CD40L) in the skin tissue of patients with keloids were higher than the levels in healthy people (p < 0.05). The number of CD8+ T cells was significantly higher in Group N than in Group C (p < 0.05). The fluorescence intensities of CD28 and CD8+ T cells in Group N were significantly higher than those in Group C (p = 0.0051). The number and viability of fibroblasts cocultured with CD8+ T cells were significantly reduced compared with those of the control (p < 0.05). The expression of CD28 and CD8+ T cells as the input layer may be predictors of the severity of keloids with mVSS as the output layer. The high-risk early warning indicator for CD28 is 10–34, and the high-risk predictive indicator for CD8+ T cells is 13–28. Conclusions: The abnormal expression of costimulatory molecules may lead to the abnormal activation of CD8+ T cells. CD8+ T cells may drive keloid-associated immunosuppression. The expression of CD28 and CD8+ T cells as an input layer may be a predictor of keloid severity. CD28 and CD8+ T cells play an important role in the development of keloids.  相似文献   

5.
Despites the fact that T cells are involved in the pathogenesis of osteoarthritis (OA) little is known about the roles of CD8+ T cells in this disease. We investigated the effects of CD8+ T cells and the expression of tissue inhibitor of metalloproteinases 1 (TIMP-1) on joint pathology. Using anterior cruciate ligament-transection (ACLT), OA was induced in mice. The knee joints were histologically assessed for manifestations of OA. The CD8+ T cells from splenocytes and synovium were flow-cytometrically and immunochemically evaluated, respectively. Local expression of TIMP-1, matrix metalloproteinase (MMP)-13, and VEGF were examined. Cartilage degeneration was slower in CD8+ T cell knockout mice than in control mice. CD8+ T cells were activated once OA was initiated and expanded during OA progression. More CD8+ T cells from splenocytes expressed TIMP-1 in ACLT-group mice than in Sham-group mice. The number of TIMP-1-expressing CD8+ T cells in OA mice correlated with the disease severity. TIMP-1 expression in cartilage was co-localized with that of MMP-13 and VEGF. TIMP-1 protein was detected in synovium in which angiogenesis occurred. During the pathogenesis of OA, the expression of TIMP-1, VEGF and MMP-13 accompanying with CD8+ T cells activation were increased. Furthermore, inhibiting the expression of TIMP-1 in joints could retard the progression of OA.  相似文献   

6.
We have previously shown that a deficiency of CD1d-restricted invariant natural killer T (iNKT) cells exacerbates dextran sulfate sodium (DSS)-induced colitis in Yeti mice that exhibit IFNγ-mediated hyper-inflammation. Although iNKT cell-deficiency resulted in reduced Foxp3 expression by mesenteric lymph node (MLN) CD4+ T cells in DSS-treated Yeti mice, the cellular mechanisms that regulate Foxp3 expression by CD25+CD4+ T cells during intestinal inflammation remain unclear. We found that Foxp3CD25+CD4+ T cells expressing Th1 and Th17 phenotypic hallmarks preferentially expanded in the MLNs of DSS-treated Yeti/CD1d knockout (KO) mice. Moreover, adoptive transfer of Yeti iNKT cells into iNKT cell-deficient Jα18 KO mice effectively suppressed the expansion of MLN Foxp3CD25+CD4+ T cells during DSS-induced colitis. Interestingly, MLN dendritic cells (DCs) purified from DSS-treated Yeti/CD1d KO mice promoted the differentiation of naive CD4+ T cells into Foxp3CD25+CD4+ T cells rather than regulatory T (Treg) cells, indicating that MLN DCs might mediate Foxp3+CD25+CD4+ T cell expansion in iNKT cell-sufficient Yeti mice. Furthermore, we showed that Foxp3CD25+CD4+ T cells were pathogenic in DSS-treated Yeti/CD1d KO mice. Our result suggests that pro-inflammatory DCs and CD1d-restricted iNKT cells play opposing roles in Foxp3 expression by MLN CD25+CD4+ T cells during IFNγ-mediated intestinal inflammation, with potential therapeutic implications.  相似文献   

7.
Achieving a functional cure for chronic hepatitis B virus (HBV) infection or complete elimination of HBV covalently closed circular DNA (cccDNA) has been challenging in the treatment of patients with chronic HBV infection. Although novel antivirals are being investigated, improving HBV-specific adaptive immune responses is also important for durable viral clearance. Tissue-resident memory CD8+ T (TRM) cells were recently reported as a T-cell population that resides in peripheral tissues and does not recirculate. TRM cells have been studied in the livers of mice and humans. Liver TRM cells have distinct characteristics compared to T cells in peripheral blood or other tissues, which may be associated with the unique microenvironment of the liver. In this review, we describe the characteristics of liver TRM cells and their implications in chronic HBV infection. We emphasize that liver TRM cells can be an immunotherapeutic target for the treatment of chronic HBV infection.  相似文献   

8.
Non-infectious uveitis (NIU) is a potentially sight-threatening disease. Effector CD4+ T cells, especially interferon-γ-(IFNγ) producing Th1 cells and interleukin-17-(IL-17) producing Th17 cells, are the major immunopathogenic cells, as demonstrated by adoptive transfer of disease in a model of experimental autoimmune uveitis (EAU). CD4+FoxP3+CD25+ regulatory T cells (Tregs) were known to suppress function of effector CD4+ T cells and contribute to resolution of disease. It has been recently reported that some CD4+ T-cell subsets demonstrate shared phenotypes with another CD4+ T-cell subset, offering the potential for dual function. For example, Th17/Th1 (co-expressing IFNγ and IL-17) cells and Th17/Treg (co-expressing IL-17 and FoxP3) cells have been identified in NIU and EAU. In this review, we have investigated the evidence as to whether these ‘plastic CD4+ T cells’ are functionally active in uveitis. We conclude that Th17/Th1 cells are generated locally, are resistant to the immunosuppressive effects of steroids, and contribute to early development of EAU. Th17/Treg cells produce IL-17, not IL-10, and act similar to Th17 cells. These cells were considered pathogenic in uveitis. Future studies are needed to better clarify their function, and in the future, these cell subsets may in need to be taken into consideration for designing treatment strategies for disease.  相似文献   

9.
CD8+ T lymphocytes are a heterogeneous class of cells that play a crucial role in the adaptive immune response against pathogens and cancer. During their lifetime, they acquire cytotoxic functions to ensure the clearance of infected or transformed cells and, in addition, they turn into memory lymphocytes, thus providing a long-term protection. During ageing, the thymic involution causes a reduction of circulating T cells and an enrichment of memory cells, partially explaining the lowering of the response towards novel antigens with implications in vaccine efficacy. Moreover, the persistent stimulation by several antigens throughout life favors the switching of CD8+ T cells towards a senescent phenotype contributing to a low-grade inflammation that is a major component of several ageing-related diseases. In genetically predisposed young people, an immunological stress caused by viral infections (e.g., HIV, CMV, SARS-CoV-2), autoimmune disorders or tumor microenvironment (TME) could mimic the ageing status with the consequent acceleration of T cell senescence. This, in turn, exacerbates the inflamed conditions with dramatic effects on the clinical progression of the disease. A better characterization of the phenotype as well as the functions of senescent CD8+ T cells can be pivotal to prevent age-related diseases, to improve vaccine strategies and, possibly, immunotherapies in autoimmune diseases and cancer.  相似文献   

10.
Cord blood T cells (CBTC) from a proportion of newborns express low/deficient levels of some protein kinase C (PKC) isozymes, with low levels of PKCζ correlating with increased risk of developing allergy and associated decrease in interferon-gamma (IFN-γ) producing T cells. Interestingly, these lower levels of PKCζ were increased/normalized by supplementing women during pregnancy with n-3 polyunsaturated fatty acids. However, at present, we have little understanding of the transient nature of the deficiency in the neonate and how PKCζ relates to other PKC isozymes and whether their levels influence maturation into IFN-γ producing T cells. There is also no information on PKCζ isozyme levels in the T cell subpopulations, CD4+ and CD8+ cells. These issues were addressed in the present study using a classical culture model of neonatal T cell maturation, initiated with phytohaemagglutinin (PHA) and recombinant human interleukin-2 (rhIL-2). Of the isozymes evaluated, PKCζ, β2, δ, μ, ε, θ and λ/ι were low in CBTCs. The PKC isozyme deficiencies were also found in the CD4+ and CD8+ T cell subset levels of the PKC isozymes correlated between the two subpopulations. Examination of changes in the PKC isozymes in these deficient cells following addition of maturation signals showed a significant increase in expression within the first few hours for PKCζ, β2 and μ, and 1–2 days for PKCδ, ε, θ and λ/ι. Only CBTC PKCζ isozyme levels correlated with cytokine production, with a positive correlation with IFN-γ, interleukin (IL)-2 and tumour necrosis factor-alpha (TNF), and a negative association with IL-9 and IL-10. The findings reinforce the specificity in using CBTC PKCζ levels as a biomarker for risk of allergy development and identify a period in which this can be potentially ‘corrected’ after birth.  相似文献   

11.
Prostate cancer poses an ongoing problem in the western world accounting for significant morbidity and mortality in the male population. Current therapy options are effective in treating most prostate cancer patients, but a significant number of patients progress beyond a manageable disease. For these patients, immunotherapy has emerged as a real option in the treatment of the late-stage metastatic disease. Unfortunately, even the most successful immunotherapy strategies have only led to a four-month increase in survival. One issue responsible for the shortcomings in cancer immunotherapy is the inability to stimulate helper CD4+ T cells via the HLA class II pathway to generate a potent antitumor response. Obstacles to proper HLA class II stimulation in prostate cancer vaccine design include the lack of detectable class II proteins in prostate tumors and the absence of defined class II specific prostate tumor antigens. Here, for the first time, we show that the insertion of a lysosomal thiol reductase (GILT) into prostate cancer cells directly enhances HLA class II antigen processing and results in increased CD4+ T cell activation by prostate cancer cells. We also show that GILT insertion does not alter the expression of prostate-specific membrane antigen (PSMA), an important target in prostate cancer vaccine strategies. Our study suggests that GILT expression enhances the presentation of the immunodominant PSMA459 epitope via the HLA class II pathway. Biochemical analysis showed that the PSMA459 peptide was cysteinylated under a normal physiologic concentration of cystine, and this cysteinylated form of PSMA459 inhibited T cell activation. Taken together, these results suggest that GILT has the potential to increase HLA class II Ag presentation and CD4+ T cell recognition of prostate cancer cells, and GILT-expressing prostate cancer cells could be used in designing cell therapy and/or vaccines against prostate cancer.  相似文献   

12.
Donor lymphocyte infusion (DLI) can (re-)induce durable remission in relapsing patients after allogeneic hematopoietic stem-cell transplantation (alloHSCT). However, DLI harbors the risk of increased non-relapse mortality due to the co-occurrence of graft-versus-host disease (GVHD). GVHD onset may be caused or accompanied by changes in the clonal T-cell receptor (TCR) repertoire. To investigate this, we analyzed T cells in a cohort of 21 patients receiving DLI after alloHSCT. We performed deep T-cell receptor β (TRB) sequencing of sorted CD4+CD25+CD127low regulatory T cells (Treg cells) and CD4+ conventional T cells (Tcon cells) in order to track longitudinal changes in the TCR repertoire. GVHD following DLI was associated with less diverse but clonally expanded CD4+CD25+CD127low Treg and CD4+ Tcon TCR repertoires, while patients without GVHD exhibited healthy-like repertoire properties. Moreover, the diversification of the repertoires upon GVHD treatment was linked to steroid-sensitive GVHD, whereas decreased diversity was observed in steroid-refractory GVHD. Finally, the unbiased sample analysis revealed that the healthy-like attributes of the CD4+CD25+CD127low Treg TCR repertoire were associated with reduced GVHD incidence. In conclusion, CD4+CD25+CD127low Treg and CD4+ Tcon TRB repertoire dynamics may provide a helpful real-time tool to improve the diagnosis and monitoring of treatment in GVHD following DLI.  相似文献   

13.
14.
Adult Renal Stem/Progenitor Cells (ARPCs) have been recently identified in the human kidney and several studies show their active role in kidney repair processes during acute or chronic injury. However, little is known about their immunomodulatory properties and their capacity to regulate specific T cell subpopulations. We co-cultured ARPCs activated by triggering Toll-Like Receptor 2 (TLR2) with human peripheral blood mononuclear cells for 5 days and 15 days and studied their immunomodulatory capacity on T cell subpopulations. We found that activated-ARPCs were able to decrease T cell proliferation but did not affect CD8+ and CD4+ T cells. Instead, Tregs and CD3+ CD4- CD8- double-negative (DN) T cells decreased after 5 days and increased after 15 days of co-culture. In addition, we found that PAI1, MCP1, GM-CSF, and CXCL1 were significantly expressed by TLR2-activated ARPCs alone and were up-regulated in T cells co-cultured with activated ARPCs. The exogenous cocktail of cytokines was able to reproduce the immunomodulatory effects of the co-culture with activated ARPCs. These data showed that ARPCs can regulate immune response by inducing Tregs and DN T cells cell modulation, which are involved in the balance between immune tolerance and autoimmunity.  相似文献   

15.
To identify potential early biomarkers of treatment response and immune-related adverse events (irAE), a pilot immune monitoring study was performed in stage IV melanoma patients by flow cytometric analysis of peripheral blood mononuclear cells (PBMC). Overall, 17 patients were treated with either nivolumab or pembrolizumab alone, or with a combination of nivolumab and ipilimumab every three weeks. Of 15 patients for which complete response assessment was available, treatment responders (n = 10) as compared to non-responders (n = 5) were characterized by enhanced PD-1 expression on CD8+ T cells immediately before treatment (median ± median absolute deviation/MAD 26.7 ± 10.4% vs. 17.2 ± 5.3%). Responders showed a higher T cell responsiveness after T cell receptor ex vivo stimulation as determined by measurement of programmed cell death 1 (PD-1) expression on CD3+ T cells before the second cycle of treatment. The percentage of CD8+ effector memory (CD8+CD45RACD45RO+CCR7) T cells was higher in responders compared to non-responders before and immediately after the first cycle of treatment (median ± MAD 39.2 ± 7.3% vs. 30.5 ± 4.1% and 37.7 ± 4.6 vs. 24.0 ± 6.4). Immune-related adverse events (irAE) were accompanied by a higher percentage of activated CD4+ (CD4+CD38+HLADR+) T cells before the second treatment cycle (median ± MAD 14.9 ± 3.9% vs. 5.3 ± 0.4%). In summary, PBMC immune monitoring of immune-checkpoint inhibition (ICI) treatment in melanoma appears to be a promising approach to identify early markers of treatment response and irAEs.  相似文献   

16.
Current methods for diagnosis and treatment of small cell lung cancer (SCLC) have only a modest efficacy. In this pilot study, we analyzed circulating tumor cells (CTCs) and cancer stem cells (CSCs) in patients with SCLC to search for new diagnostic and prognostic markers and novel approaches to improve the treatment of the disease. In other forms of lung cancer, we showed a heterogeneity of blood CTCs and CSCs populations, as well as changes in other cell populations (ALDH+, CD87+CD276+, and EGF+Axl+) in smokers. A number of CTCs and CSCs in patients with SCLC have been shown to be resistant to chemotherapy (CT). High cytotoxic activity and resistance to apoptosis of reprogrammed CD3+CD8+ T-lymphocytes (rTcells) in relation to naive CD3+CD8+ T-lymphocytes was demonstrated in a smoking patient with SCLC (Patient G) in vitro. The target for rTcells was patient G’s blood CSCs. Reprogramming of CD3+CD8+ T-lymphocytes was carried out with the MEK1/2 inhibitor and PD-1/PD-L1 pathway blocker nivolumab. The training procedure was performed with a suspension of dead CTCs and CSCs obtained from patient’s G blood. The presented data show a new avenue for personalized SCLC diagnosis and targeted improvement of chemotherapy based on the use of both CTCs and CSCs.  相似文献   

17.
(1) Liver regeneration following partial hepatectomy for colorectal liver metastasis (CRLM) has been linked to tumour recurrence. Inhibition of the renin–angiotensin system (RASi) attenuates CRLM growth in the non-regenerating liver. This study investigates whether RASi exerts an antitumour effect within the regenerating liver following partial hepatectomy for CRLM and examines RASi-induced changes in the tumour immune microenvironment; (2) CRLM in mice was induced via intrasplenic injection of mouse colorectal tumour cells, followed by splenectomy on Day 0. Mice were treated with RASi captopril (250 mg/kg/day), or saline (control) from Day 4 to Day 16 (endpoint) and underwent 70% partial hepatectomy on Day 7. Liver and tumour samples were characterised by flow cytometry and immunofluorescence; (3) captopril treatment reduced tumour burden in mice following partial hepatectomy (p < 0.01). Captopril treatment reduced populations of myeloid-derived suppressor cells (MDSCs) (CD11b+Ly6CHi p < 0.05, CD11b+Ly6CLo p < 0.01) and increased PD-1 expression on infiltrating hepatic tissue-resident memory (TRM)-like CD8+ (p < 0.001) and double-negative (CD4-CD8-; p < 0.001) T cells; (4) RASi reduced CRLM growth in the regenerating liver and altered immune cell composition by reducing populations of immunosuppressive MDSCs and boosting populations of PD-1+ hepatic TRMs. Thus, RASi should be explored as an adjunct therapy for patients undergoing partial hepatectomy for CRLM.  相似文献   

18.
BRAF and MEK inhibitor (BRAFi/MEKi) combinations are currently the standard treatment for patients with BRAFV600 mutant metastatic melanoma. Since the RAS/RAF/MEK/ERK-pathway is crucial for the function of different immune cells, we postulated an effect on their function and thus interference with anti-tumor immunity. Therefore, we examined the influence of BRAFi/MEKi, either as single agent or in combination, on the maturation of monocyte-derived dendritic cells (moDCs) and their interaction with T cells. DCs matured in the presence of vemurafenib or vemurafenib/cobimetinib altered their cytokine secretion and surface marker expression profile. Upon the antigen-specific stimulation of CD8+ and CD4+ T cells with these DCs or with T2.A1 cells in the presence of BRAFi/MEKi, we detected a lower expression of activation markers on and a lower cytokine secretion by these T cells. However, treatment with any of the inhibitors alone or in combination did not change the avidity of CD8+ T cells in peptide titration assays with T2.A1 cells. T-helper cell/DC interaction is a bi-directional process that normally results in DC activation. Vemurafenib and vemurafenib/cobimetinib completely abolished the helper T-cell-mediated upregulation of CD70, CD80, and CD86 but not CD25 on the DCs. The combination of dabrafenib/trametinib affected DC maturation and activation as well as T-cell activation less than combined vemurafenib/cobimetinib did. Hence, for a potential combination with immunotherapy, our data indicate the superiority of dabrafenib/trametinib treatment.  相似文献   

19.
Naїve CD4+ T cells, which suffer different polarizing signals during T cell receptor activation, are responsible for an adequate immune response. In this study, we aimed to evaluate the behavior of human CD4+CD45RA+ T cells after in vitro activation by anti-CD3/CD28 bead stimulation for 14 days. We also wanted to check the role of the VIP system during this process. The metabolic biomarker Glut1 was increased, pointing to an increase in glucose requirement whereas Hif-1α expression was higher in resting than in activated cells. Expression of Th1 markers increased at the beginning of activation, whereas Th17-associated biomarkers augmented after that, showing a pathogenic Th17 profile with a possible plasticity to Th17/1. Foxp3 mRNA expression augmented from day 4, but no parallel increases were observed in IL-10, IL-2, or TGFβ mRNA expression, meaning that these potential differentiated Treg could not be functional. Both VIP receptors were located on the plasma membrane, and expression of VPAC2 receptor increased significantly with respect to the VPAC1 receptor from day 4 of CD4+CD45RA+ T activation, pointing to a shift in VPAC receptors. VIP decreased IFNγ and IL-23R expression during the activation, suggesting a feasible modulation of Th17/1 plasticity and Th17 stabilization through both VPAC receptors. These novel results show that, without polarizing conditions, CD4+CD45RA+ T cells differentiate mainly to a pathogenic Th17 subset and an unpaired Treg subset after several days of activation. Moreover, they confirm the important immunomodulatory role of VIP, also on naїve Th cells, stressing the importance of this neuropeptide on lymphocyte responses in different pathological or non-pathological situations.  相似文献   

20.
Since the start of COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), more than 6 million people have lost their lives worldwide directly or indirectly. Despite intensified efforts to clarify the immunopathology of COVID-19, the key factors and processes that trigger an inflammatory storm and lead to severe clinical outcomes in patients remain unclear. As an inflammatory storm factor, IL-33 is an alarmin cytokine, which plays an important role in cell damage or infection. Recent studies have shown that serum IL-33 is upregulated in COVID-19 patients and is strongly associated with poor outcomes. Increased IL-33 levels in severe infections may result from an inflammatory storm caused by strong interactions between activated immune cells. However, the effects of IL-33 in COVID-19 and the underlying mechanisms remain to be fully elucidated. In this review, we systematically discuss the biological properties of IL-33 under pathophysiological conditions and its regulation of immune cells, including neutrophils, innate lymphocytes (ILCs), dendritic cells, macrophages, CD4+ T cells, Th17/Treg cells, and CD8+ T cells, in COVID-19 phagocytosis. The aim of this review is to explore the potential value of the IL-33/immune cell pathway as a new target for early diagnosis, monitoring of severe cases, and clinical treatment of COVID-19.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号