共查询到16条相似文献,搜索用时 0 毫秒
1.
S. Surez M. Yates A.L. Petre J.A. Martín P. Avila J. Blanco 《Applied catalysis. B, Environmental》2006,64(3-4):302-311
Monolithic catalysts based on Rh/TiO2–sepiolite were developed and tested in the decomposition of N2O traces. Several effects such as the presence of NO, O2 and NO + O2 in the gas mixture, the catalysts pre-treatment and the metal loading were evaluated. The system was extremely sensitive to the amount of rhodium, passing through a maximum in the catalytic activity at a Rh content of 0.2 wt.%. It has been demonstrated that both NO and O2 compete for the same adsorption sites as N2O; however, this effect was not as severe as for other previously reported Rh systems. For NO + O2 gas mixtures the inhibition effect was stronger than when only NO or O2 was present. Analysis of the pre-reduced sample by XPS showed Rh mainly in the metal state, even after treatment with N2O + O2 mixtures, suggesting that the oxygen consumption observed in the Temperature Programmed Reaction experiments was related to the oxygen uptake by vacancies in the support. The presence of sepiolite in the support preparation and its role as a matrix over which TiO2 particles were distributed, seems to play an important effect in the migration process of oxygen species through the support vacancies. The Rh/TiO2 monolithic system is an attractive alternative for the elimination of N2O traces from stationary sources due to the combination of high catalytic activity with a low pressure drop and optimum textural/mechanical properties. 相似文献
2.
Shin-ichi Tanaka Koichi Yuzaki Shin-ichi Ito Hiroshi Uetsuka Satoshi Kameoka Kimio Kunimori 《Catalysis Today》2000,63(2-4):413-418
N2O decomposition on an unsupported Rh catalyst has been studied using tracer technique in order to reveal the reaction mechanism. N216O was pulsed onto 18O/oxidized Rh catalyst at 220°C and desorbed O2 molecules (m/e=32,34,36) were monitored by means of mass spectrometer. The 18O fraction in the desorbed dioxygen was the same value as that on the surface oxygen. The result shows that the O2 molecules desorb via Langmuir–Hinshelwood mechanism, i.e., the desorption of dioxygen through the recombination of adsorbed oxygen. On the other hand, TPD measurements in He showed that desorption of oxygen from the Rh black catalyst occurred at the higher temperatures. Therefore, reaction-assisted desorption of oxygen during N2O decomposition reaction at the low temperature was proposed. 相似文献
3.
N2O是一种重要的温室气体,且对臭氧层有很大的破坏作用,而直接催化分解法是除去N2O最经济有效的方法之一。针对目前报道较多的钴氧化物催化剂活性较差的问题,将包覆型Co3O4核壳材料引入N2O直接催化分解反应,利用核壳结构的限域特性与壳层的多孔孔道使Co3O4分散性增加,粒径减小,金属载体相互作用与接触反应界面增强,从而提高了催化剂在N2O直接催化分解反应中的低温活性。此外,还制备了一系列不同金属含量的Co3O4@SiO2球形核壳催化剂来研究包覆结构对催化剂性能的影响,通过X射线荧光光谱(XRF)、透射电镜(TEM)、X射线衍射(XRD)、N2物理吸附、H2-程序升温还原(H2-TPR)等表征,证实在保证稳定单分散核壳结构的前提下,活性Co3O4位点越多,催化剂反应活性越好。 相似文献
4.
A novel approach for the synthesis of a new type of binary Ce–Ni–O mixed oxide catalysts is reported. The synthesis method involves the homogeneous gel-coprecipitation of oxalate precursor in alcoholic solution followed by calcinations in air. The results show that the as-prepared samples have high specific surface area and high component dispersion, exhibiting remarkably high activity in the catalytic combustion of methane as compared to the catalysts prepared by conventional coprecipitation techniques. It is suggested that the superior catalytic performance of the oxalate gel-coprecipitated Ce–Ni–O mixed oxide catalysts could be attributed to the generation of highly dispersed NiOx species and the creation of highly active oxygen vacancies as a consequence of an easier incorporation of Ni2+ ions into ceria lattice by the formation of solid solution in the mixed oxide samples. 相似文献
5.
VK Tzitzios V Georgakilas TN Angelidis 《Journal of chemical technology and biotechnology (Oxford, Oxfordshire : 1986)》2005,80(6):699-704
A study of nitrous oxide (N2O) reduction with methane (CH4) and propene (C3H6) in the presence of oxygen (5%) over Ag/Al2O3, Rh/Al2O3 and Ag–Rh/Al2O3 catalysts, with Ag and Rh loadings of 5 wt% and 0.05 wt% respectively, has been performed. From the results, it was observed that the Ag–Rh bimetallic catalyst was the most active for both nitrous oxide removal (more than 95%) and hydrocarbon oxidation. This high activity seems to be connected with a synergistic effect between Ag and Rh. The findings from X‐ray diffraction and X‐ray photoelectron spectroscopy studies showed also, that there were no strong interactions (eg alloying) between Ag and Rh. Copyright © 2005 Society of Chemical Industry 相似文献
6.
以ZrO_2为载体,采用浸渍法制备负载型钴锰复合金属氧化物催化剂,研究催化剂活性组分负载量、Co与Mn物质的量比、焙烧条件及含H_2O气氛对N_2O转化率的影响。结果表明,催化剂最佳制备条件为:活性组分Co负载质量分数3%,Co与Mn物质的量比为1∶1,焙烧升温速率2℃·min-1,焙烧温度900℃。该条件制备的负载型钴锰复合金属氧化物催化剂在反应温度850℃时,N_2O转化率达98.7%。当反应气氛中H_2O体积分数小于20%条件下,850℃时N_2O转化率高于90%,表明催化剂具有较强的抗水性能。 相似文献
7.
考察了Pd/Al2O3、In/Al2O3和Co/Al2O3对甲烷选择性还原NO的催化活性。结果表明,采用浸渍法制备的Pd/Al2O3、In/Al2O3和Co/Al2O3三种催化剂,在有氧气氛下,用CH4作还原剂催化还原NO时,Pd/Al2O3催化剂的活性最佳,热稳定性好,在550 ℃,用CH4选择还原NO,Pd/Al2O3催化剂表现出较强的催化能力,NO的转化率达到100%。在高空速实验中,该催化剂亦表现出较高的活性,其活性顺序为Pd/Al2O3>In/Al2O3>Co/Al2O3。实验研究了助催化剂、氧含量以及空速对Pd/Al2O3催化剂活性的影响。 相似文献
8.
9.
P. Granger P. Esteves S. Kieger L. Navascues G. Leclercq 《Applied catalysis. B, Environmental》2006,62(3-4):236-243
Abatement processes for the reduction of N2O emissions from acid nitric plants can be implemented in different positions. Among the different possibilities, a catalytic process set up between the ammonia converter and the absorber could be a practicable solution. In those running conditions, at high temperature, in the presence of NO, O2 and water, the catalytic decomposition of N2O (in the absence of a reducing agent) can take place. However, catalysts usually suffer from a strong deactivation owing to the occurrence of thermal sintering which significantly lowers their specific surface area. Catalytic testing performed at laboratory scale showed that zirconia based catalysts stabilised by yttrium incorporation could be of potential interest. However, the mode of yttrium incorporation seems to be a key factor. According to the preparation procedure, surface yttrium enrichment may occur and then strongly inhibit the catalytic decomposition of N2O. Co-precipitation methods can be profitably used for the preparation of modified-ZrO2 catalysts in order to obtain yttrium homogeneously distributed in the bulk material. According to this preparation method, a synergy effect on the catalytic activity and also on the stability has been observed on ZrO2 containing low amount of yttrium whereas an inhibiting effect prevails on highly loaded yttrium based catalysts irrespective of the mode of yttrium incorporation. 相似文献
10.
采用共沉淀法制备了系列CuO/CeO_2-MO(M=Mg、Ca、Sr和Ba)催化剂,通过X射线粉末衍射、M_2物理吸附、N_2O选择性化学吸附、H_2程序升温还原和循环伏安法等手段对催化剂的物化性能进行表征,考察了富氢条件下水煤气变换反应中碱土金属氧化物作为助剂对CuO/CeO_2催化剂性能的影响。结果表明,BaO作为助剂可降低载体CeO_2和CuO的晶粒度,有效增大催化剂的比表面积,提高铜组分的表面分散度,并有利于更多与载体表面氧空位有强相互作用的CuO物种的形成,从而获得较高的催化活性。MgO、CaO和SrO的添加对催化剂活性影响较小。关联活性数据和结构表征结果,推断CuO/CeO_2催化剂在水煤气变换反应中的有效活性位是与载体CeO_2表面氧空位强相互作用的单质Cu。 相似文献
11.
12.
L. Obalov K. Pacultov J. Balabnov K. Jirtov Z. Bastl M. Valkov Z. Lacný F. Kovanda 《Catalysis Today》2007,119(1-4):233-238
The Co–Mn–Al mixed oxide catalysts were prepared by thermal decomposition of hydrotalcite-like precursors with Co/(Mn + Al) molar ratio of 2 and Mn/Al molar ratio varying from 0 to 2. The obtained catalysts were characterized by powder XRD, XPS, BET surface area and TPR measurements and tested in N2O decomposition. The most active Co4MnAl catalyst exhibited both the optimum Mn/Al molar ratio and the optimum amount of components reducible in the temperature region in which the catalytic reaction proceeds (350–450 °C). 相似文献
13.
A series of cobalt–cerium mixed oxide catalysts (Co3O4–CeO2) with a Ce/Co molar ratio of 0.05 were prepared by co-precipitation (with K2CO3 and KOH as the respective precipitant), impregnation, citrate, and direct evaporation methods and then tested for the catalytic decomposition of N2O. XRD, BET, XPS, O2-TPD and H2-TPR methods were used to characterize the catalysts. Catalysts with a trace amount of residual K exhibited higher catalytic activities than those without. The presence of appropriate amount of K in Co3O4–CeO2 may improve the redox property of Co3O4, which is important for the decomposition of N2O. When the amount of K was constant, the surface area became the most important factor for the reaction. The co-precipitation-prepared catalyst with K2CO3 as precipitant exhibited the best catalytic performance because of the presence of ca. 2 mol% residual K and the high surface area. We also discussed the rate-determining step of the N2O decomposition reaction over these Co3O4–CeO2 catalysts. 相似文献
14.
以质量分数20%硝酸改性后的柱状活性焦(AC)为载体,通过负载水热法合成的带状纳米V2O5,制备出了带状纳米V2O5/AC催化剂(SV/AC)。将SV/AC和传统浸渍法制备出的V2O5/AC催化剂进行脱硝催化性能测试比较,实验结果表明:在烟道温度为200℃,空速为6 000 L/(kg·h),体积分数φ(NO)=0.05%,φ(NH3)=0.05%,φ(O2)=5%,N2为平衡气体,V2O5负载量(质量分数)为1%的条件下,SV/AC的脱硝率可达45.36%,较AC,NAC,V2O5/AC分别提高了39.5%,23.07%,8.04%。SEM和EDS发现SV/AC催化剂的表面孔隙结构较V2O5/AC,NAC,AC更为发达,BET显示SV/AC的微孔率可达61.9%,较AC,NAC,V2O5/AC分别增加了39.6%,4.3%,14.0%。在实验条件相同的情况下,研究了添加Cu,Fe,Mo,Ce的金属氧化物对带状纳米V2O5/AC催化剂脱除NO性能的影响。实验结果表明:添加了Fe2O3后的带状纳米V2O5/AC催化剂的脱硝性能最佳,在Fe2O3和纳米V2O5的负载量均为1.0%时,催化剂的脱硝率达到最大值,为49.72%,比SV/AC提高了4.36%。 相似文献
15.
针对常规合成气甲烷化催化剂高热结构稳定性差、活性低、适应性差等不足,本文创新地引用稀土金属氧化物La2O3复配过渡金属氧化物ZrO2作为多功能复合助剂,利用反向沉淀法制备了新型合成气甲烷化催化剂La2O3-ZrO2-Ni/Al2O3,同时制备催化剂Cr2O3-Ni/Al2O3作为参照组。采用X射线衍射(XRD)、透射电子显微镜(TEM)表征了催化剂的微观结构,并利用N2吸附仪(BET)测量催化剂经高温水热处理前后的微孔结构参数,以考察催化剂的高热结构稳定性。结合国内某大型煤制天然气项目工艺特征和运行实践,应用Aspen Plus软件模拟了四段甲烷化工艺理论平衡值。基于自主固定床合成气甲烷化评价实验装置,考察了反应压力、空速和原料气H2O(g)含量等因素对La2O3-ZrO2-Ni/Al2O3催化性能的影响,并开展了1000h长周期寿命评价实验。结果表明,La2O3-ZrO2-Ni/Al2O3比Cr2O3-Ni/Al2O3具有更优的高热结构稳定性;可使CO和CO2反应达到或接近催化剂床层出口温度下的理论平衡状态,呈现显著的宽温活性;活性组分NiO晶粒尺寸介于7~10nm,分散度较高;对反应压力、空速和原料气H2O(g)含量的变化不敏感,具有良好的操作弹性;1000h反应后仍能保持较高的活性和稳定性。 相似文献
16.
R. W. van den Brink S. Booneveld M. J. F. M. Verhaak F. A. de Bruijn 《Catalysis Today》2002,75(1-4):227-232
The nitric acid industry is a source of both NOx and N2O. The simultaneous selective catalytic reduction of both compounds using propane as a reductant has been investigated. A stacked catalyst bed with first a Co-ZSM-5 catalyst and second a Pd/Fe-ZSM-5 catalyst gives >80% conversion of N2O and NOx above 300 °C at atmospheric pressure. At 4 bar absolute pressure (bara) the Co-ZSM-5 DeNOx catalyst shows higher NOx and propane conversion. This leaves not enough propane for the Pd/Fe-ZSM-5 DeN2O catalyst, which causes a ‘dip’ in N2O conversion. Reducing the space velocity (SV) of the first catalyst bed secures high NOx and N2O conversions from 300 °C and up at 4 bara. 相似文献