共查询到20条相似文献,搜索用时 15 毫秒
1.
Reece Andrew Sophocleous Lezanne Ooi Ronald Sluyter 《International journal of molecular sciences》2022,23(10)
The adenosine 5′-triphosphate-gated P2X4 receptor channel is a promising target in neuroinflammatory disorders, but the ability to effectively target these receptors in models of neuroinflammation has presented a constant challenge. As such, the exact role of P2X4 receptors and their cell signalling mechanisms in human physiology and pathophysiology still requires further elucidation. To this end, research into the molecular mechanisms of P2X4 receptor activation, modulation, and inhibition has continued to gain momentum in an attempt to further describe the role of P2X4 receptors in neuroinflammation and other disease settings. Here we provide an overview of the current understanding of the P2X4 receptor, including its expression and function in cells involved in neuroinflammatory signalling. We discuss the pharmacology of P2X4 receptors and provide an overview of P2X4-targeting molecules, including agonists, positive allosteric modulators, and antagonists. Finally, we discuss the use of P2X4 receptor modulators and antagonists in models of neuroinflammatory cell signalling and disease. 相似文献
2.
Natalia Martínez-Gil Oksana Kutsyr Agustina Noailles Laura Fernndez-Snchez Lorena Vidal Xavier Snchez-Sez Carla Snchez-Castillo Pedro Lax Nicols Cuenca Antonio G. García Victoria Maneu 《International journal of molecular sciences》2022,23(23)
The purinergic receptor P2X7 (P2X7R) is implicated in all neurodegenerative diseases of the central nervous system. It is also involved in the retinal degeneration associated with glaucoma, age-related macular degeneration, and diabetic retinopathy, and its overexpression in the retina is evident in these disorders. Retinitis pigmentosa is a progressive degenerative disease that ultimately leads to blindness. Here, we investigated the expression of P2X7R during disease progression in the rd10 mouse model of RP. As the purinergic receptor P2X4 is widely co-expressed with P2X7R, we also studied its expression in the retina of rd10 mice. The expression of P2X7R and P2X4R was examined by immunohistochemistry, flow cytometry, and western blotting. In addition, we analyzed retinal functionality by electroretinographic recordings of visual responses and optomotor tests and retinal morphology. We found that the expression of P2X7R and P2X4R increased in rd10 mice concomitant with disease progression, but with different cellular localization. Our findings suggest that P2X7R and P2X4R might play an important role in RP progression, which should be further analyzed for the pharmacological treatment of inherited retinal dystrophies. 相似文献
3.
Beatriz Gil Jonathon Smith Yong Tang Peter Illes Tobias Engel 《International journal of molecular sciences》2022,23(4)
Epilepsy is one of the most common chronic diseases of the central nervous system (CNS). Treatment of epilepsy remains, however, a clinical challenge with over 30% of patients not responding to current pharmacological interventions. Complicating management of treatment, epilepsy comes with multiple comorbidities, thereby further reducing the quality of life of patients. Increasing evidence suggests purinergic signalling via extracellularly released ATP as shared pathological mechanisms across numerous brain diseases. Once released, ATP activates specific purinergic receptors, including the ionotropic P2X7 receptor (P2X7R). Among brain diseases, the P2X7R has attracted particular attention as a therapeutic target. The P2X7R is an important driver of inflammation, and its activation requires high levels of extracellular ATP to be reached under pathological conditions. Suggesting the therapeutic potential of drugs targeting the P2X7R for epilepsy, P2X7R expression increases following status epilepticus and during epilepsy, and P2X7R antagonism modulates seizure severity and epilepsy development. P2X7R antagonism has, however, also been shown to be effective in treating conditions most commonly associated with epilepsy such as psychiatric disorders and cognitive deficits, which suggests that P2X7R antagonisms may provide benefits beyond seizure control. This review summarizes the evidence suggesting drugs targeting the P2X7R as a novel treatment strategy for epilepsy with a particular focus of its potential impact on epilepsy-associated comorbidities. 相似文献
4.
María ngeles Martínez-Cuesta María Amparo Blanch-Ruiz Raquel Ortega-Luna Ainhoa Snchez-Lpez ngeles lvarez 《International journal of molecular sciences》2020,21(22)
The P2X7 receptor (P2X7R) possesses a unique structure associated to an as yet not fully understood mechanism of action that facilitates cell permeability to large ionic molecules through the receptor itself and/or nearby membrane proteins. High extracellular adenosine triphosphate (ATP) levels—inexistent in physiological conditions—are required for the receptor to be triggered and contribute to its role in cell damage signaling. The inconsistent data on its activation pathways and the few studies performed in natively expressed human P2X7R have led us to review the structure, activation pathways, and specific cellular location of P2X7R in order to analyze its biological relevance. The ATP-gated P2X7R is a homo-trimeric receptor channel that is occasionally hetero-trimeric and highly polymorphic, with at least nine human splice variants. It is localized predominantly in the cellular membrane and has a characteristic plasticity due to an extended C-termini, which confers it the capacity of interacting with membrane structural compounds and/or intracellular signaling messengers to mediate flexible transduction pathways. Diverse drugs and a few endogenous molecules have been highlighted as extracellular allosteric modulators of P2X7R. Therefore, studies in human cells that constitutively express P2X7R need to investigate the precise endogenous mediator located nearby the activation/modulation domains of the receptor. Such research could help us understand the possible physiological ATP-mediated P2X7R homeostasis signaling. 相似文献
5.
Franca Rosa Guerini Cristina Agliardi Elisabetta Bolognesi Milena Zanzottera Domenico Caputo Maria Barbara Pasanisi Marco Rovaris Mario Clerici 《International journal of molecular sciences》2022,23(23)
Multiple sclerosis (MS) is a chronic autoimmune inflammatory disease of the central nervous system (CNS) that leads to progressive physical disability. Recent evidence has suggested that P2X7 receptor (P2X7R)-mediated purinergic signalling pathways play a role in MS-associated neuroinflammation, possibly contributing to disease pathogenesis. To evaluate possible associations between P2X7R polymorphisms and MS disease severity, we performed an association study of five non-synonymous SNPs coding variants of the P2X7R gene: rs1718119 Ala348Thr, rs2230911 Thr357Ser, rs2230912 Gln460Arg, rs3751143 Glu496Ala, and rs28360457 Arg307Gln, modulating P2X7R expression in 128 MS patients (relapsing remitting MS, RRMS: n = 94; secondary progressive, SPMS: n = 34). All patients were genotyped, and multiple sclerosis severity score (MSSS) was evaluated in every case; 189 healthy subjects were enrolled as well as controls. Results showed that P2X7R rs1718119(A) 348Thr and rs22390912(G) 464Arg, two SNPs of minor allele frequency (MAF) known to confer gain of function to the P2X7R protein, were associated with significantly higher MSSS in RRMS patients alone (SMRR (p < 0.001, p = 0.01, respectively)). Interestingly, two whole haplotypes resulted in having significant association with MSSS in these same patients. Thus: (1) the P2X7R-4 “ACGAG” haplotype, characterized by the co-presence of the rs1718119-rs2230912 AG MAF alleles, was associated with higher MSSS (Beta: 1.11 p = 0.04), and (2) the P2X7R-1 “GCAAG” complementary haplotype, which contains the rs1718119 and rs2230912 GA wild-type alleles, was more frequently carried by patients with lower MSSS and less severe disease (Beta: −1.54 p < 0.001). Although being preliminary and needing confirmation in an ampler cohort, these results suggest that 348Thr and 464Arg variants have a role as modulators of disease severity in RRMS patients. 相似文献
6.
Claudia Giuseppina Fresta Giuseppe Caruso Annamaria Fidilio Chiara Bianca Maria Platania Nicol Musso Filippo Caraci Filippo Drago Claudio Bucolo 《International journal of molecular sciences》2020,21(23)
Activation of P2X7 signaling, due to high glucose levels, leads to blood retinal barrier (BRB) breakdown, which is a hallmark of diabetic retinopathy (DR). Furthermore, several studies report that high glucose (HG) conditions and the related activation of the P2X7 receptor (P2X7R) lead to the over-expression of pro-inflammatory markers. In order to identify novel P2X7R antagonists, we carried out virtual screening on a focused compound dataset, including indole derivatives and natural compounds such as caffeic acid phenethyl ester derivatives, flavonoids, and diterpenoids. Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) rescoring and structural fingerprint clustering of docking poses from virtual screening highlighted that the diterpenoid dihydrotanshinone (DHTS) clustered with the well-known P2X7R antagonist JNJ47965567. A human-based in vitro BRB model made of retinal pericytes, astrocytes, and endothelial cells was used to assess the potential protective effect of DHTS against HG and 2′(3′)-O-(4-Benzoylbenzoyl)adenosine-5′-triphosphate (BzATP), a P2X7R agonist, insult. We found that HG/BzATP exposure generated BRB breakdown by enhancing barrier permeability (trans-endothelial electrical resistance (TEER)) and reducing the levels of ZO-1 and VE-cadherin junction proteins as well as of the Cx-43 mRNA expression levels. Furthermore, HG levels and P2X7R agonist treatment led to increased expression of pro-inflammatory mediators (TLR-4, IL-1β, IL-6, TNF-α, and IL-8) and other molecular markers (P2X7R, VEGF-A, and ICAM-1), along with enhanced production of reactive oxygen species. Treatment with DHTS preserved the BRB integrity from HG/BzATP damage. The protective effects of DHTS were also compared to the validated P2X7R antagonist, JNJ47965567. In conclusion, we provided new findings pointing out the therapeutic potential of DHTS, which is an inhibitor of P2X7R, in terms of preventing and/or counteracting the BRB dysfunctions elicited by HG conditions. 相似文献
7.
Kate Dunning Adeline Martz Francisco Andrs Peralta Federico Cevoli Eric Bou-Grabot Vincent Compan Fanny Gautherat Patrick Wolf Thierry Chataigneau Thomas Grutter 《International journal of molecular sciences》2021,22(12)
P2X7 receptors (P2X7) are cationic channels involved in many diseases. Following their activation by extracellular ATP, distinct signaling pathways are triggered, which lead to various physiological responses such as the secretion of pro-inflammatory cytokines or the modulation of cell death. P2X7 also exhibit unique behaviors, such as “macropore” formation, which corresponds to enhanced large molecule cell membrane permeability and current facilitation, which is caused by prolonged activation. These two phenomena have often been confounded but, thus far, no clear mechanisms have been resolved. Here, by combining different approaches including whole-cell and single-channel recordings, pharmacological and biochemical assays, CRISPR/Cas9 technology and cell imaging, we provide evidence that current facilitation and macropore formation involve functional complexes comprised of P2X7 and TMEM16, a family of Ca2+-activated ion channel/scramblases. We found that current facilitation results in an increase of functional complex-embedded P2X7 open probability, a result that is recapitulated by plasma membrane cholesterol depletion. We further show that macropore formation entails two distinct large molecule permeation components, one of which requires functional complexes featuring TMEM16F subtype, the other likely being direct permeation through the P2X7 pore itself. Such functional complexes can be considered to represent a regulatory hub that may orchestrate distinct P2X7 functionalities. 相似文献
8.
Ugn Jonavi
Diana Romenskaja Karolina Kriau
inait Akvil Jarmalavi
it Justina Pajarskien Vytautas Kata Virginijus Tunaitis Tarja Malm Rashid Giniatulin Augustas Pivorinas 《International journal of molecular sciences》2021,22(20)
Extracellular vesicles (EVs) effectively suppress neuroinflammation and induce neuroprotective effects in different disease models. However, the mechanisms by which EVs regulate the neuroinflammatory response of microglia remains largely unexplored. Here, we addressed this issue by testing the action of EVs derived from human exfoliated deciduous teeth stem cells (SHEDs) on immortalized human microglial cells. We found that EVs induced a rapid increase in intracellular Ca2+ and promoted significant ATP release in microglial cells after 20 min of treatment. Boyden chamber assays revealed that EVs promoted microglial migration by 20%. Pharmacological inhibition of different subtypes of purinergic receptors demonstrated that EVs activated microglial migration preferentially through the P2X4 receptor (P2X4R) pathway. Proximity ligation and co-immunoprecipitation assays revealed that EVs promote association between milk fat globule-epidermal growth factor-factor VIII (MFG-E8) and P2X4R proteins. Furthermore, pharmacological inhibition of αVβ3/αVβ5 integrin suppressed EV-induced cell migration and formation of lipid rafts in microglia. These results demonstrate that EVs promote microglial motility through P2X4R/MFG-E8-dependent mechanisms. Our findings provide novel insights into the molecular mechanisms through which EVs target human microglia that may be exploited for the development of new therapeutic strategies targeting disease-associated neuroinflammation. 相似文献
9.
Ramona DAmico Roberta Fusco Rosalba Siracusa Daniela Impellizzeri Alessio Filippo Peritore Enrico Gugliandolo Livia Interdonato Andrea Maria Sforza Rosalia Crupi Salvatore Cuzzocrea Tiziana Genovese Marika Cordaro Rosanna Di Paola 《International journal of molecular sciences》2021,22(12)
Fibromyalgia is a chronic condition characterized by persistent widespread pain that significantly reduces quality of life in patients. The purinergic P2X7 receptor (P2X7R) seems to be involved in different pain states and neuroinflammation. The purpose of this study is to investigate the positive effects of P2X7R inhibition by the antagonist Brilliant Blue G (BBG) in a rat model of reserpine-induced fibromyalgia. Sprague–Dawley male rats were injected with 1 mg/kg of reserpine for three consecutive days. Later, animals were administered BBG (50 mg/kg) intraperitoneally for seven days. Reserpine injections induced a significant increase in pain pro-inflammatory mediators as well as a significant increase in neuroinflammation. Chronic pain, in turn, led to depressive-like symptoms and reduced neurogenesis. Blockage of P2X7R by BBG administrations is able to attenuate the behavioral deficits, pain mediators and microglial activation induced by reserpine injection. Additionally, BBG prevents NLRP3 inflammasome activation and consequently the release of active interleukin (IL)-1 and IL-18, involved in the activation of nociceptors. In conclusion, these results suggest that inhibition of P2X7R should be further investigated to develop a potential approach for the management of fibromyalgia. 相似文献
10.
Claudio Bernardazzi Morgana Teixeira Lima Castelo-Branco Beatriz Pêgo Beatriz Elias Ribeiro Siane Lopes Bittencourt Rosas Patrícia Teixeira Santana Joo Carlos Machado Camille Leal Fabiano Thompson Robson Coutinho-Silva Heitor Siffert Pereira de Souza 《International journal of molecular sciences》2022,23(9)
11.
12.
Matteo Tassetto Anna Scialdone Anna Solini Francesco Di Virgilio 《International journal of molecular sciences》2021,22(13)
Diabetes is a worldwide emergency. Its chronic complications impose a heavy burden on patients, health systems, and on society as a whole. Diabetic retinopathy is one of the most common and serious complications of diabetes, and an established risk factor for blindness in adults. Over 15 years of investigation led to the identification of vascular endothelial growth factor (VEGF) as a main pathogenic factor in diabetic retinopathy and to the introduction of highly effective anti-VEGF-based therapies, such as the monoclonal antibody bevacizumab or its fragment ranibizumab, which helped to prevent diabetes-related blindness in millions of patients. Recently, a pathogenic role for uncontrolled increases in the extracellular ATP concentration (eATP) and for overactivation of the purinergic receptor P2X7 (P2X7R) has been suggested. The P2X7R is an eATP-gated plasma membrane channel expressed in multiple tissues and organs, with a pleiotropic function in inflammation, immunity, cancer, and hormone and growth factor release. P2X7R stimulation or overexpression positively regulate the secretion and buildup of VEGF, thus promoting neo-angiogenesis in a wide variety of disease processes. In this review, we explore current evidence that supports the role of P2X7R receptor signaling in the pathogenesis of diabetic retinopathy, as well as the most appealing current therapeutical options for P2X7R targeting. 相似文献
13.
Lequan Wen Lirui Tang Mingming Zhang Congrui Wang Shujuan Li Yuqing Wen Hongcheng Tu Haokun Tian Jingyi Wei Peiwen Liang Changsen Yang Guodong Li Yun Gao 《International journal of molecular sciences》2022,23(11)
Chronic visceral pain can occur in many disorders, the most common of which is irritable bowel syndrome (IBS). Moreover, depression is a frequent comorbidity of chronic visceral pain. The P2X7 receptor is crucial in inflammatory processes and is closely connected to developing pain and depression. Gallic acid, a phenolic acid that can be extracted from traditional Chinese medicine, has been demonstrated to be anti-inflammatory and anti-depressive. In this study, we investigated whether gallic acid could alleviate comorbid visceral pain and depression by reducing the expression of the P2X7 receptor. To this end, the pain thresholds of rats with comorbid visceral pain and depression were gauged using the abdominal withdraw reflex score, whereas the depression level of each rat was quantified using the sucrose preference test, the forced swimming test, and the open field test. The expressions of the P2X7 receptor in the hippocampus, spinal cord, and dorsal root ganglion (DRG) were assessed by Western blotting and quantitative real-time PCR. Furthermore, the distributions of the P2X7 receptor and glial fibrillary acidic protein (GFAP) in the hippocampus and DRG were investigated in immunofluorescent experiments. The expressions of p-ERK1/2 and ERK1/2 were determined using Western blotting. The enzyme-linked immunosorbent assay was utilized to measure the concentrations of IL-1β, TNF-α, and IL-10 in the serum. Our results demonstrate that gallic acid was able to alleviate both pain and depression in the rats under study. Gallic acid also reduced the expressions of the P2X7 receptor and p-ERK1/2 in the hippocampi, spinal cords, and DRGs of these rats. Moreover, gallic acid treatment decreased the serum concentrations of IL-1β and TNF-α, while raising IL-10 levels in these rats. Thus, gallic acid may be an effective novel candidate for the treatment of comorbid visceral pain and depression by inhibiting the expressions of the P2X7 receptor in the hippocampus, spinal cord, and DRG. 相似文献
14.
To assess the role of adenylyl cyclase type 7 (AC7) in microglia’s immune function, we generated AC7 gene knockout (AC7 KO) clones from a mouse microglial cell line, BV-2, using the CRISPR-Cas9 gene editing system. The ability of BV-2 cells to generate cAMP and their innate immune functions were examined in the presence or absence of ethanol. The parental BV-2 cells showed robust cAMP production when stimulated with prostaglandin-E1 (PGE1) and ethanol increased cAMP production in a dose-dependent manner. AC7 KO clones of BV-2 cells showed diminished and ethanol-insensitive cAMP production. The phagocytic activity of the parental BV-2 cells was inhibited in the presence of PGE1; AC7 KO BV-2 cells showed lower and PGE1-insensitive phagocytic activity. Innate immune activities of the parental BV-2 cells, including bacterial killing, nitric oxide synthesis, and expression of arginase 1 and interleukin 10 were activated as expected with small effects of ethanol. However, the innate immune activities of AC7 KO cells were either drastically diminished or not detected. The data presented suggest that AC7 has an important role in the innate immune functions of microglial cells. AC7’s involvement in ethanol’s effects on immune functions remains unclear. Further studies are needed. 相似文献
15.
16.
Mingming Zhang Yuqing Wen Peiwen Liang Changsen Yang Hongcheng Tu Jingyi Wei Junpei Du Ting Zhan Shangdong Liang Guodong Li Yun Gao 《International journal of molecular sciences》2023,24(1)
Obesity can activate the inflammatory signal pathway, induce in the body a state of chronic inflammation, and increase the excitability of the sympathetic nervous system, which may induce sympathetic neuropathic injury. The stellate sympathetic ganglia (SG) can express the P2X4 receptor, and the abnormal expression of the P2X4 receptor is related to inflammation. Imperatorin (IMP) is a kind of furan coumarin plant which has anti-inflammatory effects. This project aimed to investigate whether IMP can affect the expression of P2X4 receptors in the SG of obese rats to display a protective effect from high-fat-triggered cardiac sympathetic neuropathic injury. Molecular docking through homology modelling revealed that IMP had good affinity for the P2X4 receptor. Our results showed that compared with the normal group, the administration of IMP or P2X4 shRNA decreased sympathetic excitement; reduced the serum levels of triglyceride, total cholesterol, and lactate dehydrogenase; downregulated the expression of P2X4 receptors in SG; and inhibited the expression of inflammatory factors in the SG and serum of obese rats significantly. In addition, the expression of factors associated with the cell pyroptosis GSDMD, caspase-1, NLRP-3, and IL-18 in obese rats were significantly higher than those of the normal rats, and such effects were decreased after treatment with IMP or P2X4 shRNA. Furthermore, IMP significantly reduced the ATP-activated currents in HEK293 cells transfected with P2X4 receptor. Thus, the P2X4 receptor may be a key target for the treatment of obesity-induced cardiac sympathetic excitement. IMP can improve obesity-induced cardiac sympathetic excitement, and its mechanism of action may be related to the inhibition of P2X4 receptor expression and activity in the SG, suppression of cellular pyroptosis in the SG, and reduction of inflammatory factor levels. 相似文献
17.
Sin-Lih Tan Muruj Barri Peace Atakpa-Adaji Colin W. Taylor Ewan St. John Smith Ruth D. Murrell-Lagnado 《International journal of molecular sciences》2021,22(19)
The P2X4 purinergic receptor is targeted to endolysosomes, where it mediates an inward current dependent on luminal ATP and pH. Activation of P2X4 receptors was previously shown to trigger lysosome fusion, but the regulation of P2X4 receptors and their role in lysosomal Ca2+ signaling are poorly understood. We show that lysosomal P2X4 receptors are activated downstream of plasma membrane P2X7 and H1 histamine receptor stimulation. When P2X4 receptors are expressed, the increase in near-lysosome cytosolic [Ca2+] is exaggerated, as detected with a low-affinity targeted Ca2+ sensor. P2X4-dependent changes in lysosome properties were triggered downstream of P2X7 receptor activation, including an enlargement of lysosomes indicative of homotypic fusion and a redistribution of lysosomes towards the periphery of the cell. Lysosomal P2X4 receptors, therefore, have a role in regulating lysosomal Ca2+ release and the regulation of lysosomal membrane trafficking. 相似文献
18.
David Bravo Katherine Zepeda-Morales Carola J. Maturana Jeffri S. Retamal Alejandro Hernndez Teresa Pelissier Rafael Barra Patricio Sez-Briones Hctor Burgos Luis Constandil 《International journal of molecular sciences》2022,23(12)
Pannexin 1 (Panx1) is involved in the spinal central sensitization process in rats with neuropathic pain, but its interaction with well-known, pain-related, ligand-dependent receptors, such as NMDA receptors (NMDAR) and P2X7 purinoceptors (P2X7R), remains largely unexplored. Here, we studied whether NMDAR- and P2X7R-dependent nociceptive signaling in neuropathic rats require the activation of Panx1 channels to generate spinal central sensitization, as assessed by behavioral (mechanical hyperalgesia) and electrophysiological (C-reflex wind-up potentiation) indexes. Administration of either a selective NMDAR agonist i.t. (NMDA, 2 mM) or a P2X7R agonist (BzATP, 150 μM) significantly increased both the mechanical hyperalgesia and the C-reflex wind-up potentiation, effects that were rapidly reversed (minutes) by i.t. administration of a selective pannexin 1 antagonist (10panx peptide, 300 μM), with the scores even reaching values of rats without neuropathy. Accordingly, 300 μM 10panx completely prevented the effects of NMDA and BzATP administered 1 h later, on mechanical hyperalgesia and C-reflex wind-up potentiation. Confocal immunofluorescence imaging revealed coexpression of Panx1 with NeuN protein in intrinsic dorsal horn neurons of neuropathic rats. The results indicate that both NMDAR- and P2X7R-mediated increases in mechanical hyperalgesia and C-reflex wind-up potentiation require neuronal Panx1 channel activation to initiate and maintain nociceptive signaling in neuropathic rats. 相似文献
19.
Tom Hutteau-Hamel Amine Mellouk Nicolas Trainel Anne-Marie Cassard Pierre Bob 《International journal of molecular sciences》2022,23(12)
We have previously showed that plasma membrane cholesterol and GM1 ganglioside content are responsible for the opposite sensitivity of mouse leukemic T cells to ATP. We also reported that the sensitivity of CD4+ and CD8+ T cells to ATP depends on their stage of differentiation. Here, we show that CD4+ and CD8+ T cells from B6 mice express different levels of membrane GM1 and P2X7 but similar levels of cholesterol. Thus, in CD4+ T cells, membrane cholesterol content negatively correlated with ATP/P2X7-induced CD62L shedding but positively correlated with pore formation, phosphatidylserine externalization, and cell death. By contrast, in CD8+ T cells, cholesterol, GM1, and P2X7 levels negatively correlated with all these ATP/P2X7-induced cellular responses. The relationship between cholesterol and P2X7-induced cellular responses was confirmed by modulating cholesterol levels either ex vivo or through a high-fat diet. Membrane cholesterol enrichment ex vivo led to a significant reduction in all P2X7-induced cellular responses in T cells. Importantly, diet-induced hypercholesterolemia in B6 mice was also associated with decreased sensitivity to ATP in CD4+ and CD8+ T cells, highlighting the relationship between cholesterol intake and the amplitudes of P2X7-induced cellular responses in T cells. 相似文献
20.
Multiple sclerosis (MS) is an autoimmune inflammatory disease of the central nervous system that leads to the progressive disability of patients. A characteristic feature of the disease is the presence of focal demyelinating lesions accompanied by an inflammatory reaction. Interactions between autoreactive immune cells and glia cells are considered as a central mechanism underlying the pathology of MS. A glia-mediated inflammatory reaction followed by overproduction of free radicals and generation of glutamate-induced excitotoxicity promotes oligodendrocyte injury, contributing to demyelination and subsequent neurodegeneration. Activation of purinergic signaling, in particular P2X7 receptor-mediated signaling, in astrocytes and microglia is an important causative factor in these pathological processes. This review discusses the role of astroglial and microglial cells, and in particular glial P2X7 receptors, in inducing MS-related neuroinflammatory events, highlighting the importance of P2X7R-mediated molecular pathways in MS pathology and identifying these receptors as a potential therapeutic target. 相似文献