首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wet gas metering with a horizontally mounted Venturi meter   总被引:23,自引:0,他引:23  
Wet gas metering is becoming an increasingly important problem to the Oil and Gas Industry. The Venturi meter is a favoured device for the metering of the unprocessed wet natural gas production flows. Wet gas is defined here as a two-phase flow with up to 50% of the mass flowing being in the liquid phase. Metering the gas flowrate in a wet gas flow with use of a Venturi meter requires a correction of the meter reading to account for the liquids effect. Currently, most correlations in existence were created for Orifice Plate Meters and are for general two-phase flow. However, due to no Venturi meter correlation being published before 1997 industry was traditionally forced to use these Orifice Plate Meter correlations when faced with a Venturi metering wet gas flows. This paper lists seven correlations, two recent wet gas Venturi correlations and five older Orifice Plate general two-phase flow correlations and compares their performance with new independent data from the NEL Wet Gas Loop with an ISA Controls Ltd. Standard specification six inch Venturi meter of 0.55 beta ratio installed. Finally, a new correlation is offered.  相似文献   

2.
This work deals with the flow metering of wet gas issued from high pressure natural reservoirs. Some recent results obtained from tests performed on the CEESI facilities are presented. They are performed at 75 bar with 0.6 beta ratio Venturi meter installed in horizontal pipe configuration. Correction factors obtained are compared to predictions deduced from the flow modelling inside of the meter. These results are analysed in order to explain the agreements or disagreements obtained between the experiments and the flow modelling.  相似文献   

3.
Differential pressure (DP) meters which utilise a cone as the system’s primary element are increasingly being used to measure wet natural gas flows (i.e. mixtures of natural gas, light hydrocarbon liquids and water). It is therefore important to understand this meter’s response to wet natural gas flows. Research into the wet gas response of the horizontally installed cone DP meter is discussed in this paper. Consideration is given to the significant influence of the liquid properties on wet gas flow patterns and the corresponding influence of the flow pattern on the cone DP meter’s liquid phase induced gas flow rate prediction error. A wet natural gas flow correlation for 4 in. 0.75 beta ratio cone DP meters with natural gas, hydrocarbon liquid and water flow has been developed from multiple data sets from three different wet gas flow test facilities. This corrects the liquid induced gas flow rate prediction error of a wet gas flow up to a Lockhart–Martinelli parameter of 0.3, for a known liquid flow rate of any hydrocarbon liquid/water ratio, to ±4% at a 95% confidence level.  相似文献   

4.
The venturi flow meter is increasingly being preferred in multiphase flow measurement because of its shorter upstream and downstream straight sections, less influenced by the flow pattern and relatively small pressure loss. However, when the venturi is used for wet gas measurement, the over-reading phenomenon occurs due to the presence of a small amount of liquid. Many scholars have established over-reading models to correct the measured values of wet gas. Regrettably, the applicability of these over-reading models under actual high pressure operating conditions has not been verified. Therefore, this review focuses on numerical simulation of the flow of wet gas in the venturi tube under high pressure conditions (11MPa/13MPa/15 MPa). The discrete phase model (DPM) and the standard k-ε model was employed in this review. The simulations results reveals the flow characteristics of wet gas in venturi tube, which includes the flow field distributions, droplet concentration distributions and wall pressure profile distributions, and indicates that the over-reading values increases with the increase of Lockhart-Martinelli parameters and gas volume flow rate, but decreases with the increase of pressure. Moreover, the ISO model has the best performance under high pressure conditions.  相似文献   

5.
To gain a deeper understanding of the performance of V-Cone meter in low pressure wet gas measurement, the over-reading of the V-Cone meter was experimentally investigated in the present study. The equivalent diameter ratio of the V-Cone meter is 0.55. The experimental fluids were air and tap water. The operating pressure and the gas volume fraction ranged from 0.1 MPa to 0.4 MPa and 97.52%–100%, respectively. The results showed that the existing V-Cone wet gas correlation, which was developed for the medium and high pressure wet gas cannot be well extended to the low pressure conditions. The Chisholm exponent monotonically decreased with the ratio of liquid-to-gas mass flow rate increasing, and was almost not affected by the gas to liquid density ratio and the gas densiometric Froude number in the present test ranges. A measurement correlation dedicated for the low pressure wet gas was developed. In the present cases, the relative deviation of the gas mass flow rate predicted by the new correlation was within ±4.0% and ±3.0% under the 95% and 90% confidence level, respectively; the average relative deviation was 0.046%. Our results provide insights into the measurement performance of V-Cone meter in low pressure wet gas and may help to develop a more comprehensive wet gas correlation.  相似文献   

6.
The Venturi flow meter exhibits relatively low pressure loss, simple design, and low manufacturing costs. This study describes flow rates measurements for supercritical pressure CO2 using the Venturi flow meter with pressure ranging 7.379–7.836 MPa and 5.84–7.272 MPa for in supercritical and gaseous regions, respectively. The flow rates of supercritical pressure CO2 were accurately measured using a Venturi flow meter with a diameter ratio of 0.6468, having large and small diameters of 87.32 mm and 56.48 mm, respectively. The convergent and divergent angles were 21 ° ± 1 ° and 15 ° ± 1 °, respectively. The averaged discharge coefficient of 0.9975 was obtained, which was independent of the pressure ratio. Additionally, the expansion factors were also calculated using the experimental results, which ranged from 0.99976 to 0.99987 and 0.99945–0.99995 for the supercritical and gaseous regions, respectively. The experimental results showed that the Venturi flow meter had uncertainties ranging from 0.1 to 2.8%.  相似文献   

7.
Wet gas metering is becoming an increasingly important problem to many industries, in particular the oil and gas industry. Extensive studies have been done in the past on Venturi and standard orifice differential pressure (DP) flow meters to tackle wet gas flow problems. However in recent years, the slotted orifice flow meter has been developed in the attempt to improve the performance of the standard orifice meter. The novel flow meter is shown to be insensitive to the upstream flow profile with lower head loss and faster pressure recovery. This paper describes the numerical studies to establish the effect of different geometrical perforations on the performance of the slotted orifice. Three sets of slotted orifices with varying aspect ratios (1.5≤l/w≤3.0), of rectangular perforations and one slotted orifice with a circular perforation and a β ratio of 0.40 are simulated in a 1.6 m horizontal pipe using the k-ε turbulence model over a range of parameters, i.e. gas volume fraction (GVF) and gas mass flow rate. The commercial CFD code, FLUENT 6.3 was used to model the wet gas flow. Simulation results revealed that the shape of the perforation has no effect on the differential pressure, However, a marginally better pressure recovery was observed with rectangular perforations of l/w=3.0. The relatively higher over-reading values obtained in this work are consistent with the results of Geng et al. (2006) [1] that for a slotted orifice, a low β ratio is more sensitive to the liquid presence in the stream and hence is preferable for wet gas metering. Mass flow prediction by wet gas correlations showed that the homogeneous model, Steven’s and De Leeuw’s correlations had the best performance, with a calculated mean error of 4%-5%.  相似文献   

8.
A wet gas dual-parameter measuring device composed of a cyclone and a long-throated Venturi tube is proposed to overcome the difficulty of measuring the liquid content of wet gases and reduce the error caused by the wet gas flow pattern. The flow pattern is transformed into an annular flow by a cyclone. In this study, the proposed device was compared with a traditional non-cyclone long-throat Venturi tube; furthermore, the pressure difference ratio W between the contraction and expansion sections of the long-throat Venturi tube was introduced as a parameter. Through numerical simulations, the relationship between W, the gas Froude number, over-reading, and liquid-gas mass flow ratio was analyzed, and a new wet gas flow measurement model was established. The reliability of the measurement model was verified through indoor experiments. The experimental results showed that the traditional wet gas measurement device had gas phase and liquid phase errors of ±4.5% and ±10%, respectively; on the other hand, the cyclone-based wet gas measurement device had gas phase and liquid phase errors of ±3% and ±8%, respectively. Thus, the performance of the wet gas measurement device with the cyclone was higher than that of the traditional wet gas measurement device.  相似文献   

9.
基于槽式孔板的凝析天然气计量技术   总被引:1,自引:0,他引:1  
介绍了一种新型气液两相流量传感器——槽式孔板的结构特点和工作原理,并将其应用于凝析天然气计量技术研究。结合实验数据和理论模型详细分析了影响槽式孔板两相压降倍率的各种因素,利用曲面拟合技术给出了传感器两相压降倍率与压力、气体富劳德准数、Lockhart-Martinelli参数之间的相关式,该相关式计算精度可以满足生产计量的精度要求,为低含液率的凝析天然气流量计研制奠定了基础。  相似文献   

10.
简要介绍使用差压式流量传感器进行一般气体流量测量时的温压补偿方法;指出了差压方式流量传感器测量一般气体的通用流量温压补偿公式,并写出了公式的推导过程;与线性流量传感器温压补偿方法进行对比,强调指出了采用差压式流量传感器时进行温压补偿的注意要点.对公用工程中的一般气体的流量计量工作有一定的指导作用.  相似文献   

11.
Venturi meters are playing an increasingly important role in wet gas metering in natural gas and oil industries. Convincible measurement of the flowrate of wet gas requires two parameters, namely, the whole mass flowrate and its quality. It is commonly believed that the two parameters can be obtained if the Venturi meter is combined with another device of a different principle. However, this is not always the case. Owing to the complexity of the model for wet gas metering, the problem of multiple solutions may occur. Proceeding from a static model on the differential pressure (DP) signal of the Venturi meter, a dynamic model is presented that can provide an extra functional relation to resolve this problem without the need of adding a third device. This functional relation monotonously maps the relative fluctuation of the DP signal to the quality of the wet gas and simplifies the selection of the true solution. Experiments have been carried out within static pressure range of 0.3–0.8 MPa, gas flowrate range of 50–100 m3/h and quality range of 0.06–0.412. Emphasis of the experiments has been on the demonstration of the validity of the static and dynamic models. Finally, appropriate discussions and conclusions are given.  相似文献   

12.
We have developed a transfer standard system with sonic Venturi nozzles for small mass flow rates of gases. The system is composed of a newly developed automatic pressure controller, two pressure sensors and one temperature sensor to measure the flow conditions in the upstream and downstream sides of a nozzle. The whole system is packed in a portable aluminum trunk. The data are sent to a laptop computer, and the results are displayed on the screen and are written to files. The system can calibrate a flow meter in the flow rate range from 10 mg/min to 100 g/min using ten different sonic Venturi nozzles with the expanded standard uncertainty (k=2) being less than 0.2% for nitrogen. Examples of mass flow controller calibrations are given.  相似文献   

13.
Based on the operational conditions of the PetroChina Southwest Oil & Gas well field, this study aims to explore the wet gas flow overreading (OR) characteristics of a nonstandard long-throat Venturi by the means of computational fluid dynamics (CFD) technique. The studied prototype structure size is an inner diameter of 50 mm, a diameter ratio of 0.4 and a throat length of 50 mm. According to the field experiment, the simulation pressure is 3 MPa gauge. Through a comparative study of the multiphase flow models and turbulence models, combined with the analysis of the Baker׳s flow regime and interparticle space under the field conditions, this paper eventually employed DPM model and Eulerian model for wet gas simulation, respectively, and RSM for turbulence model. An equivalent droplet diameter adjustment method was implemented to improve the precision of prediction. During post-processing, the liquid phase distributions and the wall pressure profiles were investigated. The numerical results indicate that the differential pressure in convergent section of long-throat Venturi by using DPM model is less than that by using Eulerian model, and the differential pressures in the divergent section by using the two models are analogous. Afterwards, the OR prediction correlations based on the differential pressure ratio method were proposed, and then compared and validated by the industrial field tests. The root mean square errors (RMSE) and the average relative errors predicted by Eulerian model were 4.24% and 3.78%, 5.69% and 5.01% by using DPM model, respectively. In conclusion, Eulerian model is more suitable for wet gas flow prediction. And some advice on the improvement of the multiphase flow simulation is provided to get a more preferable performance in wet gas flow prediction.  相似文献   

14.
The aim of this work is to study the response of a Venturi meter submitted to an annular two phase flow where the liquid phase contains simultaneously water and oil. After a literature survey on the oil/water/gas flow in pipes, this paper presents the results of an experimental analysis performed at low pressure on a vertical downward pipe configuration. In a first step the structure of the liquid film is described from visual observations using high speed video records. Relationship between the two liquids inside of the film structure is enhanced. Inversion phenomena described in the literature are observed for given fraction of water in the liquid phase (known as the water cut). In a second step, the analysis of the atomisation of the liquid inside of the Venturi meter is presented. No preferential atomisation of one of the two liquid is observed. The results obtained clearly show the influence of the water cut on the atomisation rate and confirm the influence of the inversion phenomenon. They also indicate the link between the atomisation process and the deviation in the gas mass flow rate deduced from differential pressure measurements.  相似文献   

15.
随着非标准流量仪表种类和数量的日益增加,为了保证仪表的测量精度。非标流量仪表的标定要求显得日益迫切。系统采用了国际标准文丘利作为标准表。应用标准流量计“比较法”原理,配合计算机程序控制,建立气体流量标定系统。进行流量计的检定和测试。依据有关的国家检定规程。该装置可对多孔孔板、V锥、楔形、巴类等差压式仪表以及涡轮、涡街、旋进旋涡等流量计进行检定、工业现场流量模拟实验以及风洞实验。通过运行实践证明,该系统测量精度高,稳定性好,标定流量范围宽。  相似文献   

16.
针对涡街湿气测量过读问题,提出了基于加速度检测的涡街过读校正和分相流量测量方法。设计了高频响三轴加速度探头,分别对敏感元件、探头尺寸和封装进行了优化设计。干气标定结果表明,在4.43×104~1.81×105雷诺数范围内,测量精度为±1.0%,线性度为1.06%。然后,在不同湿气工况(载气压力和流量、液相流量)下测试了输出频率和加速度幅值特性,以气、液相韦伯数为参数,分别建立了涡街过读和两相加速度幅值模型。最后,联立两方程建立了湿气测量模型,并利用牛顿迭代算法进行求解。预测结果表明,气相测量误差在±1.0%以内,不确定度0.46%,液相全量程误差在±15%以内,不确定度10.04%。与未过读校正时最大8%的测量误差相比,气相测量精度大大提升,同时实现了湿气中分相流的在线测量。  相似文献   

17.
The performance of a turbine meter in two-phase (water/air) flow in a vertical pipe is assessed. If the single phase (water) meter factor is used in two-phase flow, the total (water and air) flowrate is found to be underpredicted. The error can be as much as 12.5% at a void fraction of 25%. A technique for using measurements of the fluctuations in the turbine meter rotor velocity to determine void fraction (= air flowrate/total flowrate) is described. A single meter is then used to measure, using this technique, both the water flowrate to an accuracy of ± 2% and void fraction to an accuracy of ±0.02.  相似文献   

18.
The void fraction is one of the key parameters in the measurement of gas/liquid two-phase flow. It can be derived from the absolute conductivity distribution based on Maxwell׳s theory. With Electrical Resistance Tomography (ERT) technology, the absolute conductivity distribution is obtained by multiplying the relative conductivity image with the reference conductivity which is conventionally the liquid conductivity of a gas/liquid flow. Unfortunately the liquid conductivity is not always available. Therefore, a conductivity fitting method is proposed in this paper, to find an optimal reference conductivity, which will be used in substituting the liquid conductivity to reconstruct the quasi-absolute conductivity image. The optimal reference conductivity fitting method is proposed and validated by simulation and experiments under certain flow regimes, e.g. slug flow, annular flow and bubbly flow. The simulation and experimental results show that, independent from prior-knowledge, the fitted quasi-homogenous conductivity is close to the average conductivity of the sensing field. It also leads to a much more accurate estimation of void fraction than the conventional method using liquid conductivity as the reference. With the proposed method, the ERT technique can play a more significant role in the measurement of multiphase flow (MPF).  相似文献   

19.
To develop a reliable wet gas flowrate measurement model, the relationships between pressure drop characteristics and entrainment downstream of the cone are investigated experimentally. The equivalent diameter ratio of the cone is 0.45. The experimental fluids are air and tap water with XLM in the range of 0–0.3. The two-phase mass flow coefficient and pressure loss ratio are employed to establish the measurement model. The piecewise characteristics of pressure loss ratio are disclosed innovatively, which is explained by the different intensity of entrainment downstream of cone caused by gas-liquid jetting. A simplified method for evaluating the degree of entrainment is proposed to facilitate the establishment of the modified measurement model. Under the present experimental conditions, the relative error of liquid fluctuates within ±20% when XLM is larger than 0.02, and the relative error of gas flowrate is within ±5%. Compared with the model without piecewise consideration, the relative error of the liquid flowrate of the modified model reduces obviously under low wetness conditions (0.02<XLM<0.1). The modified measurement model provides a reliable and cost-effective technology for wet gas flowrate measurement.  相似文献   

20.
The mechanism of differential pressure noise of orifices in two-phase flow has been investigated and a theoretical model has been developed for measurement of the double parameters, i.e. mass flow rate as well as phase fraction (steam quality). The model has been proved in a set of orifice experiments in a two-phase flow system at a pressure range of 5.8–12.1 MPa and steam quality of 0.05–0.95, and a practical model has been fitted. The r.m.s. errors of mass flow rate and steam quality estimated by the model are 9.0 and 6.5%, respectively. The results of the studies create a method to measure double parameters of two-phase flow at once using only a single orifice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号