首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Rufinamide (RFM) is a clinically utilized antiepileptic drug that, as a triazole derivative, has a unique structure. The extent to which this drug affects membrane ionic currents remains incompletely understood. With the aid of patch clamp technology, we investigated the effects of RFM on the amplitude, gating, and hysteresis of ionic currents from pituitary GH3 lactotrophs. RFM increased the amplitude of Ca2+-activated K+ currents (IK(Ca)) in pituitary GH3 lactotrophs, and the increase was attenuated by the further addition of iberiotoxin or paxilline. The addition of RFM to the cytosolic surface of the detached patch of membrane resulted in the enhanced activity of large-conductance Ca2+-activated K+ channels (BKCa channels), and paxilline reversed this activity. RFM increased the strength of the hysteresis exhibited by the BKCa channels and induced by an inverted isosceles-triangular ramp pulse. The peak and late voltage-gated Na+ current (INa) evoked by rapid step depolarizations were differentially suppressed by RFM. The molecular docking approach suggested that RFM bound to the intracellular domain of KCa1.1 channels with amino acid residues, thereby functionally affecting BKCa channels’ activity. This study is the first to present evidence that, in addition to inhibiting the INa, RFM effectively modifies the IK(Ca), which suggests that it has an impact on neuronal function and excitability.  相似文献   

3.
Soybean (Glycine max) is an economically important crop which is very susceptible to salt stress. Tolerance to Na2SO4 stress was evaluated in soybean plants overexpressing or suppressing the phytoglobin GmPgb1. Salt stress depressed several gas exchange parameters, including the photosynthetic rate, caused leaf damage, and reduced the water content and dry weights. Lower expression of respiratory burst oxidase homologs (RBOHB and D), as well as enhanced antioxidant activity, resulting from GmPgb1 overexpression, limited ROS-induced damage in salt-stressed leaf tissue. The leaves also exhibited higher activities of the H2O2-quenching enzymes, catalase (CAT) and ascorbate peroxidase (APX), as well as enhanced levels of ascorbic acid. Relative to WT and GmPgb1-suppressing plants, overexpression of GmPgb1 attenuated the accumulation of foliar Na+ and exhibited a lower Na+/K+ ratio. These changes were attributed to the induction of the Na+ efflux transporter SALT OVERLY SENSITIVE 1 (SOS1) limiting Na+ intake and transport and the inward rectifying K+ channel POTASSIUM TRANSPORTER 1 (AKT1) required for the maintenance of the Na+/K+ balance.  相似文献   

4.
Wei Liu  Wei Zhao  Sujuan Zhang 《Desalination》2009,249(3):1288-1293
In this paper, the photocatalytic degradation of trichlorfon, an organophosphorous pesticide, was studied by using TiO2 as a photocatalyst. The effects of various parameters, such as the amount of the photocatalyst, illumination time, reaction temperature, electron acceptors, metal ions, anions, and initial pH value on the photocatalytic degradation of trichlorfon were investigated. The best conditions for the photocatalytic degradation of trichlorfon were obtained. The results show that the optimum amount of the photocatalyst used is 8.0 g L− 1. The photodegradation efficiency of trichlorfon increases with the increase of the illumination time or reaction temperature. The photodegradation efficiency of trichlorfon is increased rapidly by adding a small amount of H2O2, K2S2O8, KBrO3, Fe3+ and Cu2+, however, with the addition of Na+, K+, Mg2+, Ca2+, Zn2+, Co2+ and Ni2+, or with the addition of trace amount of SO42−, Cl, Br, there are no obvious effects on the photocatalytic degradation reactions. Alkaline mediums are favorable for the photocatalytic degradation of trichlorfon. The possible roles of the additives on the reactions and the possible mechanisms of effect were also discussed.  相似文献   

5.
Sperm-specific K+ ion channel (KSper) and Ca2+ ion channel (CatSper), whose elimination causes male infertility in mice, determine the membrane potential and Ca2+ influx, respectively. KSper and CatSper can be activated by cytosolic alkalization, which occurs during sperm going through the alkaline environment of the female reproductive tract. However, which intracellular pH (pHi) regulator functionally couples to the activation of KSper/CatSper remains obscure. Although Na+/H+ exchangers (NHEs) have been implicated to mediate pHi in sperm, there is a lack of direct evidence confirming the functional coupling between NHEs and KSper/CatSper. Here, 5-(N,N-dimethyl)-amiloride (DMA), an NHEs inhibitor that firstly proved not to affect KSper/CatSper directly, was chosen to examine NHEs function on KSper/CatSper in mouse sperm. The results of patch clamping recordings showed that, when extracellular pH was at the physiological level of 7.4, DMA application caused KSper inhibition and the depolarization of membrane potential when pipette solutions were not pH-buffered. In contrast, these effects were minimized when pipette solutions were pH-buffered, indicating that they solely resulted from pHi acidification caused by NHEs inhibition. Similarly, DMA treatment reduced CatSper current and intracellular Ca2+, effects also dependent on the buffer capacity of pH in pipette solutions. The impairment of sperm motility was also observed after DMA incubation. These results manifested that NHEs activity is coupled to the activation of KSper/CatSper under physiological conditions.  相似文献   

6.
7.
Sphingosine-1-phosphate (S1P), is a signaling sphingolipid which acts as a bioactive lipid mediator. We assessed whether S1P had multiplex effects in regulating the large-conductance Ca2+-activated K+ channel (BKCa) in catecholamine-secreting chromaffin cells. Using multiple patch-clamp modes, Ca2+ imaging, and computational modeling, we evaluated the effects of S1P on the Ca2+-activated K+ currents (IK(Ca)) in bovine adrenal chromaffin cells and in a pheochromocytoma cell line (PC12). In outside-out patches, the open probability of BKCa channel was reduced with a mean-closed time increment, but without a conductance change in response to a low-concentration S1P (1 µM). The intracellular Ca2+ concentration (Cai) was elevated in response to a high-dose (10 µM) but not low-dose of S1P. The single-channel activity of BKCa was also enhanced by S1P (10 µM) in the cell-attached recording of chromaffin cells. In the whole-cell voltage-clamp, a low-dose S1P (1 µM) suppressed IK(Ca), whereas a high-dose S1P (10 µM) produced a biphasic response in the amplitude of IK(Ca), i.e., an initial decrease followed by a sustained increase. The S1P-induced IK(Ca) enhancement was abolished by BAPTA. Current-clamp studies showed that S1P (1 µM) increased the action potential (AP) firing. Simulation data revealed that the decreased BKCa conductance leads to increased AP firings in a modeling chromaffin cell. Over a similar dosage range, S1P (1 µM) inhibited IK(Ca) and the permissive role of S1P on the BKCa activity was also effectively observed in the PC12 cell system. The S1P-mediated IK(Ca) stimulation may result from the elevated Cai, whereas the inhibition of BKCa activity by S1P appears to be direct. By the differentiated tailoring BKCa channel function, S1P can modulate stimulus-secretion coupling in chromaffin cells.  相似文献   

8.
Robust, spontaneous pacemaker activity originating in the sinoatrial node (SAN) of the heart is essential for cardiovascular function. Anatomical, electrophysiological, and molecular methods as well as mathematical modeling approaches have quite thoroughly characterized the transmembrane fluxes of Na+, K+ and Ca2+ that produce SAN action potentials (AP) and ‘pacemaker depolarizations’ in a number of different in vitro adult mammalian heart preparations. Possible ionic mechanisms that are responsible for SAN primary pacemaker activity are described in terms of: (i) a Ca2+-regulated mechanism based on a requirement for phasic release of Ca2+ from intracellular stores and activation of an inward current-mediated by Na+/Ca2+ exchange; (ii) time- and voltage-dependent activation of Na+ or Ca2+ currents, as well as a cyclic nucleotide-activated current, If; and/or (iii) a combination of (i) and (ii). Electrophysiological studies of single spontaneously active SAN myocytes in both adult mouse and rabbit hearts consistently reveal significant expression of a rapidly activating time- and voltage-dependent K+ current, often denoted IKr, that is selectively expressed in the leading or primary pacemaker region of the adult mouse SAN. The main goal of the present study was to examine by combined experimental and simulation approaches the functional or physiological roles of this K+ current in the pacemaker activity. Our patch clamp data of mouse SAN myocytes on the effects of a pharmacological blocker, E4031, revealed that a rapidly activating K+ current is essential for action potential (AP) repolarization, and its deactivation during the pacemaker potential contributes a small but significant component to the pacemaker depolarization. Mathematical simulations using a murine SAN AP model confirm that well known biophysical properties of a delayed rectifier K+ current can contribute to its role in generating spontaneous myogenic activity.  相似文献   

9.
Febrile seizures (FS) are one of the most common seizure disorders in childhood which are classified into short and prolonged, depending on their duration. Short FS are usually considered as benign. However, epidemiological studies have shown an association between prolonged FS and temporal lobe epilepsy. The development of animal models of FS has been very useful to investigate the mechanisms and the consequences of FS. One of the most used, the “hair dryer model”, has revealed that prolonged FS may lead to temporal lobe epilepsy by altering neuronal function. Several pieces of evidence suggest that Na+/ K+-ATPase and Mg2+-ATPase may play a role in this epileptogenic process. In this work, we found that hyperthermia-induced seizures (HIS) significantly increased the activity of Na+/ K+-ATPase and Mg2+-ATPase five and twenty days after hyperthermic insult, respectively. These effects were diminished in response to AMPA, D2 dopamine A1 and A2A receptors activation, respectively. Furthermore, HIS also significantly increased the protein level of the AMPA subunit GluR1. Altogether, the increased Na+/ K+-ATPase and Mg2+-ATPase agree well with the presence of protective mechanisms. However, the reduction in ATPase activities in the presence of NMDA and AMPA suggest an increased propensity for epileptic events in adults.  相似文献   

10.
The La2−xAxMo2O9−δ (A = Ca2+, Sr2+, Ba2+ and K+) series has been synthesised as nanocrystalline materials via a modification of the freeze-drying method. The resulting materials have been characterised by X-ray diffraction (XRD), thermal analysis (TG/DTA, DSC), scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM). The high-temperature β-polymorph is stabilised for dopant content x > 0.01. The nanocrystalline powders were used to obtain dense ceramic materials with optimised microstructure and relative density >95%. The overall conductivity determined by impedance spectroscopy depends on both the ionic radius and dopant content. The conductivity decreases slightly as the dopant content increases in addition a maximum conductivity value was found for Sr2+ substitution, which show an ionic radii slightly higher than La3+ (e.g. 0.08 S cm−1 for La2Mo2O9 and 0.06 S cm−1 for La1.9Sr0.1Mo2O9−δ at 973 K). The creation of extrinsic vacancies upon substitution results in a wider stability range under reducing conditions and prevents amorphisation, although the stability is not enhanced significantly when compared to samples with higher tungsten content. These materials present high thermal expansion coefficients in the range of (13-16) × 10−6 K−1 between room temperature and 753 K and (18-20) × 10−6 K−1 above 823 K. The ionic transport numbers determined by a modified emf method remain above 0.98 under an oxygen partial pressure gradient of O2/air and decreases substantially under wet 5% H2-Ar/air when approaching to the degradation temperature above 973 K due to an increase of the electronic contribution to the overall conductivity.  相似文献   

11.
Life-long stable heart function requires a critical balance of intracellular Ca2+. Several ion channels and pumps cooperate in a complex machinery that controls the influx, release, and efflux of Ca2+. Probably one of the most interesting and most complex players of this crosstalk is the Na+/Ca2+ exchanger, which represents the main Ca2+ efflux mechanism; however, under some circumstances, it can also bring Ca2+ into the cell. Therefore, the inhibition of the Na+/Ca2+ exchanger has emerged as one of the most promising possible pharmacological targets to increase Ca2+ levels, to decrease arrhythmogenic depolarizations, and to reduce excessive Ca2+ influx. In line with this, as a response to increasing demand, several more or less selective Na+/Ca2+ exchanger inhibitor compounds have been developed. In the past 20 years, several results have been published regarding the effect of Na+/Ca2+ exchanger inhibition under various circumstances, e.g., species, inhibitor compounds, and experimental conditions; however, the results are often controversial. Does selective Na+/Ca2+ exchanger inhibition have any future in clinical pharmacological practice? In this review, the experimental results of Na+/Ca2+ exchanger inhibition are summarized focusing on the data obtained by novel highly selective inhibitors.  相似文献   

12.
A new single molecule multianalyte sensor, vanillic aldehyde rhodamine 6G hydrazone has been designed for the selective detection of Cu2+ and Hg2+ ions. UV/Vis spectroscopy indicates that the sensor is a good chromogenic chemosensor for Cu2+ in 1:99 (v/v) ethanol-water media. Whereas, other ions, such as Li+, Na+, Mg2+, K+, Ca2+, Cr3+, Mn2+, Fe3+, Co2+, Ni2+, Zn2+, Ag+, Cd2+, Ba2+, Hg2+ and Pb2+ failed to generate a distinct response. Fluorescence spectral data reveals that the sensor is an excellent fluorescent chemosensor for Hg2+ in aqueous ethanol solution and with no fluorescent response toward other ions. The spectroscopic behavior of the sensor in living cells indicated that it can be used for the detection of Cu2+ and Hg2+ in environmental and biological systems. Mechanisms for the high selectivity of the sensor to Cu2+ and Hg2+ are discussed.  相似文献   

13.
14.
Columbianadin (CBN) is a bioactive coumarin-type compound with various biological activities. However, the action of CBN on the ionic mechanism remains largely uncertain, albeit it was reported to inhibit voltage-gated Ca2+ current or to modulate TRP-channel activity. In this study, whole-cell patch-clamp current recordings were undertaken to explore the modifications of CBN or other related compounds on ionic currents in excitable cells (e.g., pituitary GH3 cells and HL-1 atrial cardiomyocytes). GH3-cell exposure to CBN differentially decreased peak or late component of voltage-gated Na+ current (INa) with effective IC50 of 14.7 or 2.8 µM, respectively. The inactivation time course of INa activated by short depolarization became fastened in the presence of CBN with estimated KD value of 3.15 µM. The peak INa diminished by 10 µM CBN was further suppressed by subsequent addition of either sesamin (10 µM), ranolazine (10 µM), or tetrodotoxin (1 µM), but it was reversed by 10 µM tefluthrin (Tef); however, further application of 10 µM nimodipine failed to alter CBN-mediated inhibition of INa. CBN (10 µM) shifted the midpoint of inactivation curve of INa to the leftward direction. The CBN-mediated inhibition of peak INa exhibited tonic and use-dependent characteristics. Using triangular ramp pulse, the hysteresis of persistent INa enhanced by Tef was noticed, and the behavior was attenuated by subsequent addition of CBN. The delayed-rectifier or erg-mediated K+ current was mildly inhibited by 10 µM CBN, while it also slightly inhibited the amplitude of hyperpolarization-activated cation current. In HL-1 atrial cardiomyocytes, CBN inhibited peak INa and raised the inactivation rate of the current; moreover, further application of 10 µM Tef attenuated CBN-mediated decrease in INa. Collectively, this study provides an important yet unidentified finding revealing that CBN modifies INa in electrically excitable cells.  相似文献   

15.
Li1.6Mn1.6O4/PVDF多孔膜的制备及提锂性能   总被引:1,自引:4,他引:1  
解利昕  陈小棉 《化工学报》2014,65(1):237-243
自制锂离子筛前驱体Li1.6Mn1.6O4,并将Li1.6Mn1.6O4粒子与高分子树脂PVDF杂化制膜,研究了膜经稀盐酸抽锂后对锂的吸附性能以及多次吸附与脱附性能等。结果表明,膜M-10-55[Li]采用0.5 mol·L-1 HCl溶液抽锂约2 h锂的脱出基本达到平衡,Li+的洗脱率在95%左右,锰的溶损率为3.5%左右。抽锂后得M-10-55[H]对富锂溶液中锂的吸附约12 h达平衡,对锂的吸附容量较高为41 mg·g-1,在第5次吸附时对锂的提取量为35 mg·g-1左右。相比于Na+、K+、Mg2+、Ca2+,该膜对Li+表现出较好的选择性,对于从海水、盐湖卤水等液态锂资源中提取锂有很大的开发潜力。  相似文献   

16.
The Ca3−xB2O6:xDy3+ (0.0 ≤ x ≤ 0.105) and Ca2.95−yDy0.05B2O6:yLi+ (0 ≤ y ≤ 0.34) phosphors were synthesized at 1100 °C in air by solid-state reaction route. The as-synthesized phosphors were characterized by X-ray powder diffraction (XRD), scanning electron microscope (SEM), photoluminescence excitation (PLE) and photoluminescence (PL) spectra. The PLE spectra show the excitation peaks from 300 to 400 nm is due to the 4f-4f transitions of Dy3+. This mercury-free excitation is useful for solid state lighting and light-emitting diodes (LEDs). The emission of Dy3+ ions upon 350 nm excitation is observed at 480 nm (blue) due to the 4F9/2 → 6H15/2 transitions, 575 nm (yellow) due to 4F9/2 → 6H13/2 transitions and a weak 660 nm (red) due to 4F9/2 → 6H11/2 emissions, respectively. The optimal PL intensity of the Ca3−xB2O6:xDy3+ phosphors is found to be x = 0.05. Moreover, the PL results from Ca2.95−yDy0.05B2O6:yLi+ phosphors show that Dy3+ emissions can be enhanced with the increasing codopant Li+ content till y = 0.22. By simulation of white light, the CIE of the investigated phosphors can be tuned by varying the content of Li+ ions, and the optimal CIE value (0.300, 0.298) is realized when the content of Li+ ions is y = 0.22. All the results imply that the Ca2.95−yDy0.05B2O6:yLi+ phosphors could be potentially used as white LEDs.  相似文献   

17.
18.
Mice lacking functional thyroid follicular cells, Pax8−/− mice, die early postnatally, making them suitable models for extreme hypothyroidism. We have previously obtained evidence in postnatal rat neurons, that a down-regulation of Na+-current density could explain the reduced excitability of the nervous system in hypothyroidism. If such a mechanism underlies the development of coma and death in severe hypothyroidism, Pax8−/− mice should show deficits in the expression of Na+ currents and potentially also in the expression of Na+/K+-ATPases, which are necessary to maintain low intracellular Na+ levels. We thus compared Na+ current densities in postnatal mice using the patch-clamp technique in the whole-cell configuration as well as the expression of three alpha and two beta-subunits of the Na+/K+-ATPase in wild type versus Pax8−/− mice. Whereas the Na+ current density in hippocampal neurons from wild type mice was upregulated within the first postnatal week, the Na+ current density remained at a very low level in hippocampal neurons from Pax8−/− mice. Pax8−/− mice also showed significantly decreased protein expression levels of the catalytic α1 and α3 subunits of the Na+/K+-ATPase as well as decreased levels of the β2 isoform, with no changes in the α2 and β1 subunits.  相似文献   

19.
Selective catalytic reduction of NO by hydrogen was studied over Cr modified Pt/ZSM-35 catalysts. The preparation process greatly influenced catalytic activity and sample prepared by co-impregnation method exhibits the best activity. In situ DRIFT studies revealed that on Pt–Cr/ZSM-35, (1) new Pt-NOδ+ and NO species adsorbed on Pt were detected upon NO + O2 adsorption; (2) much more ammonia species were formed under reaction condition. Cr addition not only enhanced the adsorption of NOx but also promoted the formation of surface NH4+ species, which should be the origin of promotional effect of Cr on Pt/ZSM-35 for H2-SCR reaction.  相似文献   

20.
The synthetic rutile and metal-doped LiFePO4 are prepared from the high-titanium residue and iron-rich lixivium, which are obtained from the ilmenite by a mechanical activation and leaching process. ICP results show that the rutile contains 92.01% TiO2, 1.59% Fe2O3, 0.034% MnO2 and 0.60% (MgO + CaO), which meet the requirement of the titanium dioxide chlorination process. The results also reveal that small amounts of Al3+, Ca2+ and Ti4+ precipitate in the FePO4·xH2O precursor. XRD and Rietveld-refine results show that the metal-doped LiFePO4 is single olivine-type phase and well crystallized, and Ti4+ occupy M1 site, Ca2+ occupy M2 site and Al3+ occupy both sites, which indicates the formation of cation-deficient solid solution. The sample exhibits a capacity of 123 mAh g1 at 5C rate, and retains 94.3% of the capacity after 100 cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号