首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The hardware and software of an experimental test system which has been designed, constructed and operated for the analysis of transitional characteristics of a laminar time-dependent flow field into turbulence with comprehensive uncertainty analysis are the major contents of the paper. Therefore presentation herein aims to offer an application case in terms of time-dependent measurement and data acquisition technology using an electronic digital mass flow control (MFC) unit at laboratory site instead of previously used pressure driven mechanisms. The flow field is a sinusoidal pulsatile one in order to simulate the real practice and to utilize the simplicity in production, control and analysis of oscillation. The previous background and the updated portrait on the transitional pulsatile flow [1], [2] are outlined to determine the relevant flow parameters and their critical ranges, the details of the measurement and data acquisition systems and the proposed methodologies. The production of the controlled pulsatile flow and the generated flow characteristics, the methodology for the analysis, accuracy and sensitivity of the measurement and data acquisition chains are given for the purpose. The overall uncertainties of the velocity and pressure measurement chains are found to be ±3.2% and ±1.3%, respectively. The range of the experimental research devised to investigate the interactive influences of oscillation frequency, f and velocity amplitude ratio, A1 in the intermediate and the inertia dominant regions of pulsatile flow field with an emphasis on transition to turbulence is presented via sample measurements of mean velocity and pressure waveforms as solid outputs without going into details on physical aspects of flow dynamics.  相似文献   

2.
A variety of active flow control (AFC) methods are typically used in low-speed applications; however, the AFC techniques that are available for high-speed, supersonic applications are very limited. Under AFOSR (Air Force Research Laboratory) sponsorship, The Johns Hopkins University Applied Physics Laboratory (JHU/APL) is investigating a device that is intended for high-speed flow control; it is called the SparkJet actuator, which manipulates high-speed flows without active mechanical components. To date, actuator characterization has included computational and experimental techniques including parametric studies and flow visualization techniques to investigate the operation of the SparkJet device under various conditions. This paper focuses on the experimental flow measurement techniques that have been implemented. The results will be used for validating prospective computational studies that investigate the detailed characteristics of the SparkJet’s discharge and cooling stages after an energy deposition pulse. Current efforts include the use of high- resolution particle image velocimetry (PIV) to quantify the quiescent air operation of a single SparkJet pulse. However, the proper seeding of the SparkJet cavity continues to be challenging and has led to the use of digital speckle tomography (DST) to measure the temperature distribution in the core of the SparkJet plume. In this study, improved PIV techniques were used to acquire a higher-resolution image of the SparkJet-entrained flow. These PIV results show that the peak velocity in the entrained flow is around 53 m/s and the plume is sustained for 75–100 μs. Additionally, the DST data show a peak temperature of 1616.3 K at 75 μs and provide supporting information for interpreting the PIV data. These results are intended to calibrate and build confidence in a computational model.  相似文献   

3.
Centrifugal pumps are present in the daily life of human beings. They are essential to several industrial processes that transport single- and multi-phase flows with the presence of water, gases, and emulsions, for example. When pumping low-viscous liquids, the flow behavior in impellers and diffusers may affect the centrifugal pump performance. For these flows, complex structures promote instabilities and inefficiencies that may represent a waste of energetic and financial resources. In this context, this paper aims at characterizing single-phase water flows in one complete stage of a centrifugal pump to improve our understanding of the relationship between flow behavior and pump performance. For that, a transparent pump prototype was designed, manufactured and installed in a test facility, and experiments using particle image velocimetry (PIV) were conducted at different conditions. The acquired images were then processed to obtain instantaneous flow fields, from which the flow characteristics were determined. Our results indicate that the flow morphology depends on the rotational speed of the impeller and water flow rate: (i) the flow is uniform when the pump works at the best efficiency point (BEP), with streamlines aligned with the blades, and low vorticity and turbulence in the impeller; (ii) the velocity field becomes complex as the pump begins to operate at off-design conditions, away from BEP. In this case, velocity fluctuations and energy losses due to turbulence increase to higher numbers. Those results bring new insights into the problem, helping validate numerical simulations, propose mathematical models, and improve the design of new impellers.  相似文献   

4.
The flow downstream of three different flow conditioners, a tube bundle and two perforated plates, was investigated by measuring the time-averaged, axial velocity component with Particle Image Velocimetry (PIV). The conditioners were exposed to the flow disturbed by a 90° out-of-plane double-bend. The experiments were performed with air flow through a pipeline of 100 mm i.d. and at Reynolds numbers between 100 000 and 200 000. The axial development of the velocity profiles, without and with conditioner, is documented, and the performance of the three devices in conditioning the disturbed flow can be compared. Particular attention is given to the determination of time-averaged velocity values by means of PIV.  相似文献   

5.
粒子图像速度技术被广泛用于流体流动测量,介质折射率差异使光在圆管壁面发生偏折,导致图像失真,直接影响速度测量精度。本文建立了光学折射的物理模型,得到圆形管道中物点和图像点之间的函数关系进而得到矫正后图像的像素坐标,使用双线性插值算法得到像素灰度值重建出矫正后的粒子图像,最后根据多重网格迭代算法计算管内速度场。分别对流体进行管内静态流体与管内层流速度场测量实验,对比了光学矫正箱法、线性矫正以及基于光学模型的畸变矫正方法误差。结果表明,本文提出的基于几何光学的图像矫正方法精度优于光学矫正箱法和线性矫正方法,并通过静态与流动实验充分验证了所建立几何光学模型的准确性和有效性。  相似文献   

6.
Fluidized Beds (FBs) are widely employed in the petroleum and coal energy sector because they offer excellent contact, both in terms of high surface area and long times. The last two decades has seen measurement on multiphase flows shift from conventional pressure sensors to direct flow image acquisition and processing. Particle Image Velocimetry or PIV, and PIV coupled with Digital Image Analysis or DIA, are used to directly and instantaneously acquire flow field data to make hidden flow patterns and flow structures discoverable. Research abounds on Gas-Solid FB hydrodynamics using PIV, but Liquid-Solid and Gas-Liquid-Solid systems are only slowly catching up. Similarly, the use of Geldart B and D particles for such studies is very common, whereas A and C type particle hydrodynamics is as yet largely unexplored by using imaging. Turbulence, high temperature, particle clusters, particle agglomeration and dense particle flows pose particular challenges to using PIV in FB. The two-zone FB and micro-FB warrant further attention. Small sized A & C type particles of rod-like, plate-like and angular shape provide huge scope for PIV investigations on FBs in the future. This review provides a concise account of several PIV studies on all types of FBs with focus on the past two decades, and also details the limitations of PIV measurements with future scope of work.  相似文献   

7.
Measuring the liquid velocity and turbulence parameters in multiphase flows is a challenging task. In general, measurements based on optical methods are hindered by the presence of the gas phase. In the present work, it is shown that this leads to a sampling bias. Here, particle image velocimetry (PIV) is used to measure the liquid velocity and turbulence in a bubble column for different gas volume flow rates. As a result, passing bubbles lead to a significant sampling bias, which is evaluated by the mean liquid velocity and Reynolds stress tensor components. To overcome the sampling bias a window averaging procedure that waits a time depending on the locally distributed velocity information (hold processor) is derived. The procedure is demonstrated for an analytical test function. The PIV results obtained with the hold processor are reasonable for all values. By using the new procedure, reliable liquid velocity measurements in bubbly flows, which are vitally needed for CFD validation and modeling, are possible. In addition, the findings are general and can be applied to other flow situations and measuring techniques.  相似文献   

8.
Horizontal gas-liquid flows are commonly encountered in the production section of the oil and gas industry. To further understand all parameters of the pipe cross-section, this paper use particle image velocimetry to study the circular pipe cross-section liquid velocity distribution rule. Firstly the focus is on the software and hardware combination of image correction system, to solve the influence of different refractive indexes of medium and pipeline curvature caused by image distortion. Secondly, the velocity distribution law of the corrected stratified flow (the range of liquid flow of 0.09-0.18 m3/h, and gas flow range of 0.3-0.7 m3/h) cross-section at different flow points of the pipeline cross-section at x=0 and in the Y direction at the maximum liquid velocity is studied. It is found that these distribution laws are caused by the influence of the interphase force of the gas-liquid interface and the resistance of the pipe wall. The current measurements also produce a valuable data set that can be used to further improve the stratified flow model for gas-liquid flow.  相似文献   

9.
The velocities, turbulence intensities, Reynolds shear stresses, and turbulent kinetic energies of the flow fields around two square cylinders in a tandem arrangement were investigated using particle image velocimetry (PIV). The experiments were made for the spacing between the two cylinders ranging from s/D = 0.5 to 10.0 and two Reynolds numbers of 5,300 and 16,000. The results showed that the flow patterns at s/D≤2.0 were drastically different from those at s/D≥2.5 for both Reynolds numbers. The sudden change in the flow patterns depended on the reattachment of the shear layer separated from the upstream cylinder.  相似文献   

10.
Spherical-rod float image velocimetry (SFIV) is a convenient technique combining the positive functions of a rod float velocimetry (RFV) and large-scale particle image velocimetry (LSPIV) for measuring high flow rate in mountain rivers. The SFIV is the principle that the sphere allowing little image distortion according to the orientation is used as a floating tracer for LSPIV. The drifting distances of a spherical-rod float were calculated by geometrical interpretation of spherical images recorded in an experimental open channel and mountain rivers. The depth-reflecting velocities estimated by SFIV in the rivers as in the open channel coincided approximately with the velocities by visual observation from river bank despite of the long shooting distance, weather impact, and flow complicated by topography and bed materials. The velocity coefficients obtained from the experimental channel were used to evaluate depth-averaged velocity for river discharges. The high discharges estimated by SFIV in mountain rivers distributed mostly within the range of the rating curve established by RFV. The results show that the safe and efficient SFIV is a highly applicable technique in mountain rivers with the high flow rate and complex flow. In order to practically use SFIV in mountain rivers, additional studies are required for velocity coefficients depending on the water depth and draft.  相似文献   

11.
Flow unsteadiness is a typical feature of both combined and storm sewer flow. The following study therefore deals with both theoretical and experimental investigations of the steady uniform and transient turbulent open-channel flows in a circular conduit with smooth walls as well as over rough sediment deposits. The aim of the study is to define the relationship between flow unsteadiness and selected flow/turbulence characteristics estimated in a circular tube running partially full using the ultrasonic velocity profiler (UVP) method. The temporal/spatial turbulence intensities and the Reynolds stress distribution were identified in the mid-vertical of the pipe. Generally, the absolute values of turbulent characteristics are larger in the rising branch of the hydrograph than in the descending one for the same flow depths. This difference in absolute values is related to the flow equilibrium parameter. Furthermore, the influence of the sediment bed on selected flow/turbulence variables was studied. The results show a strong impact of cross-section geometry on local values of friction velocity, i.e. bottom shear stress, along the wetted perimeter of the channel cross-section. Interestingly, their relative values decreased along with an increase in flow depth.  相似文献   

12.
Population growth and global industrialization cause a dramatic increase in the amount of sewage sludge produced annually worldwide from Municipal and Industrial Wastewater treatment. The efficient measurement of sewage, which is a typical solid-liquid two-phase flow, has become an important issue that requires to be urgently addressed. In this study, an improved Ultrasonic Doppler Velocimetry (UDV) is proposed to optimize the probe design and hardware design, which reduces the influence of working frequency and echo reverberation on accuracy and improves the stability of the system. A Doppler peak extraction and superposition method is also put forward to correct the offset of Doppler peak frequency. In this paper, Particle Image Velocimetry (PIV) is used to calibrate the UDV system to modify the measurement model of ultrasonic Doppler liquid-solid two-phase flow, and dynamic experiments are carried out in a vertical steel pipe with inner diameter of 50 mm at different flow conditions. The results show that the accuracy and stability of UDV measurement system are greatly improved, with a maximum relative error of 1.49%.  相似文献   

13.
时空图像测速法是以河流表面图像中测速线为分析区域、通过检测合成时空图像的纹理主方向计算得到一维时均流速的测量方法,具有空间分辨率高、实时性强的特点。在实际应用中纹理主方向的检测精度难免会受到水面紊流、倒影、耀光、障碍物、降雨等环境扰动的影响,导致测量出现粗大误差。频域滤波技术是一种抑制噪声的有效方法,能显著提高时空图像的纹理清晰度。但现有研究在滤波器参数的敏感性分析方面存在不足,使得该方法的适用性受限。对此通过在水文站搭建在线视频测流系统采集了不同条件的河流水面视频数据,分析了6种典型场景下时空图像的空域及频域特性,进而开展了频域扇形滤波器方向角、通带夹角及半径参数的敏感性分析实验。实验结果表明:采用提出的椭圆形积分区域检测方向角优于现有的单像素宽直线;当设置通带夹角为±5.3°且半径为R/2时,滤波器在上述场景下均能有效地滤除噪声干扰。使得时空图像纹理主方向的检测精度在正常场景下达到0.1°,在复杂含噪场景下控制在0.5°以内,表面流速测量的相对误差小于6.2%。  相似文献   

14.
In the magnesium electrolysis process, chlorine gas bubbles release at the surfaces of anode and affect electrolyte flow patterns. This paper presents an experimental apparatus to simulate the flow field induced by chlorine gas evolution at the gas-evolving electrodes of magnesium electrolysis cell. The three-dimensional flow structures were determined by using volumetric three-component velocimetry (V3V) technique, which has the ability to capture the out-of-plane velocity component. The three-dimensional flow structures in the region with a depth about 120 mm can be obtained. To achieve this, approximately 15,000 three-dimensional velocity vectors were detected in the flow measurements and constituted the three-dimensional flow field, which eliminated the perspective error caused by the out-of-plane motion in Particle Image Velocimetry (PIV) method. In experiments, comparisons are made between the V3V and PIV results. The in-of-plane velocities data obtained by V3V technique have the same trend with the PIV results, and V3V provides more details in the third direction for the flow field accurately.  相似文献   

15.
粒子图像测速技术(PIV)是一种全新的非接触式的,瞬时的,全场流速测量方法,广泛应用于流体力学中。本研究将PIV技术引入烟丝运动研究是一个尝试,旨在为烟丝流量的检测提供一个新的测量手段。通过分析烟丝在风送管道内的运动,利用PIV技术并结合PTV技术,采用图像处理得到烟丝的运动速度。粒子图像测速技术具有一定的优势,可以克服传统测量手段的不足。  相似文献   

16.
In order to maintain the flow uniformity and prevent the ejecting metal powders across the working chamber of Selective Laser Melting (SLM), for the purpose of obtaining the high quality products, flow observations inside the chamber need to be carefully conducted. This study proposed the technique of particle image velocimetry (PIV) for investigating the flow characteristics inside the SLM chamber, with examining two elliptical blowing nozzles with different aspect ratios (ARs). The mean velocity distributions, turbulence intensities, vorticities and Reynolds stress were analyzed to evaluate the performances of the two nozzles, Ellipse 1 and Ellipse 2. The experimental results demonstrated that Ellipse 1 with higher AR were more suitable for SLM operation, owing to the faster velocity decay, the higher spread rate and entrainment and the smaller stagnation region.  相似文献   

17.
Targeting a pseudoplastic fluid, we propose a method to simultaneously estimate viscosity and pressure fields from the velocity field data of particle image velocimetry (PIV). As a two-dimensional case study, we chose a steady two-dimensional wake structure behind a circular cylinder where local viscosity and pressure are dynamically coupled. The method involves PIV, momentum conservation equation of non-Newtonian fluids and rheological constitutive equations. The CMC (Carboxy Methyl Cellulose) aqueous solution of weight concentration of 0.1% is used as a test case of pseudoplastic fluid. Viscosity distribution is obtained through power law model and Carreau-Yasuda model as the constitutive equation. Pressure distribution is then calculated by substituting the viscosity into the momentum conservation equation. Applied results show pressure-lowering at the vortex cores and viscosity-lowering at their perimeters, stabilizing vortex attachment to the cylinder in the pseudoplastic fluid. We also analyze error propagation characteristics to conclude the feasibility of the present method and highlight the difference in error propagation characteristics during pressure estimation between Newtonian and pseudoplastic fluid flows.  相似文献   

18.
The flow structures around an equilateral triangular cylinder, which is commonly used as a vortex shedder in the vortex flowmeter, were investigated experimentally and numerically. Flow characteristics such as vorticity contours, patterns of sectional streamlines, velocity vectors, velocity fields, Reynolds stress correlations, Strouhal numbers and drag coefficients were examined using the Particle Image Velocimetry (PIV) technique and the Large Eddy Simulation (LES) turbulence model. Experimental studies were performed in an open water channel for Re=2.9×103, Re=5.8×103 and Re=1.16×104 based on the equilateral triangle edge. A sharp-tip corner of the cylinder with a triangle cross-section was exposed to the upstream side while the other two sharp-tip corners were placed on the downstream side. Numerical studies were also completed at Reynolds numbers in the range of 2.9×103≤Re≤1.16×105 to obtain the changes in the Strouhal numbers and drag coefficients. When the results of PIV and LES are considered in the same interval of Reynolds numbers, the maximum and minimum values of each flow pattern were nearly the same. The time-averaged patterns had considerable symmetry with respect to the axis line passing through the sharp-tip corner of the cross-section of the triangular cylinder. The Strouhal number was independent of the Reynolds number and was found to be approximately 0.22. The drag coefficient decreased with increasing Reynolds numbers while increasing the Power Spectral Density (PSD) and the vortex shedding frequency. For the same Reynolds numbers, the experimental and numerical results were in good agreement. Therefore, the LES turbulence model is recommended for applications of flow around this type of bluff body that is generally used in the design of vortex flowmeters to generate vortex shedding.  相似文献   

19.
To understand the swirling-flow behavior in a complex pipeline geometry comprising an elbow and orifice, a quantitative flow visualization technique is introduced into the flow-field observation using a bubble trajectory method combined with stereo particle tracking/image velocimetry. For the chosen bubble sizes of approximately 2 mm un a pipe of 56 mm in diameter, their motion is correlated with the mean swirling flow, and when analyzed in a straight swirling flow, the bubbles cluster close to the point of maximum axial velocity for swirl intensities larger than 0.3. Subsequently, this experimental technique is applied to the characterization of a swirling flow in the Mihama pipeline model, for which the streamwise variation of the location of the maximum axial velocity and its magnitude are measured over the full range of the pipeline model. A spiral swirling flow is observed downstream of the elbow owing to the combined effect of the swirling and secondary flows in the elbow. The spiral swirling flow persists in the following straight pipe down to the orifice, where a highly accelerated flow with a high turbulence is generated towards the top wall of the pipe. This result agrees closely with the observation of pipe-wall thinning in the prototype Mihama pipeline.  相似文献   

20.
The double blade pump is widely used in sewage treatment industry,however,the research on the internal flow characteristics of the double blade pump with particle image velocimetry(PIV) technology is very little at present.To reveal inner flow characteristics in double blade pump impeller under off-design and design conditions,inner flows in a double blade pump impeller,whose specific speed is 111,are measured under the five off-design conditions and design condition by using 3D PIV test technology.In order to ensure the accuracy of the 3D PIV test,the external trigger synchronization system which makes use of fiber optic and equivalent calibration method are applied.The 3D PIV relative velocity synthesis procedure is compiled by using Visual C++ 2005.Then absolute velocity distribution and relative velocity distribution in the double blade pump impeller are obtained.Test results show that vortex exists in each condition,but the location,size and velocity of vortex core are different.Average absolute velocity value of impeller outlet increases at first,then decreases,and then increases again with increase of flow rate.Again average relative velocity values under 0.4,0.8,and 1.2 design condition are higher than that under 1.0 design condition,while under 0.6 and 1.4 design condition it is lower.Under low flow rate conditions,radial vectors of absolute velocities at impeller outlet and blade inlet near the pump shaft decrease with increase of flow rate,while that of relative velocities at the suction side near the pump shaft decreases.Radial vectors of absolute velocities and relative velocities change slightly under the two large flow rate conditions.The research results can be applied to instruct the hydraulic optimization design of double blade pumps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号