首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rice spotted leaf mutants are helpful to investigate programmed cell death (PCD) and defense response pathways in plants. Using a map-based cloning strategy, we characterized novel rice spotted leaf mutation splHM143 that encodes a 7-hydroxymethyl chlorophyll a reductase (OsHCAR). The wild-type (WT) allele could rescue the mutant phenotype, as evidenced by complementation analysis. OsHCAR was constitutively expressed at all rice tissues tested and its expression products localized to chloroplasts. The mutant exhibited PCD and leaf senescence with increased H2O2 (hydrogen peroxide) accumulation, increased of ROS (reactive oxygen species) scavenging enzymes activities and TUNEL (terminal deoxyribonucleotidyl transferase-mediated dUTP nick-end labeling) -positive nuclei, upregulation of PCD related genes, decreased chlorophyll (Chl) contents, downregulation of photosynthesis-related genes, and upregulation of senescence-associated genes. Besides, the mutant exhibited enhanced bacterial blight resistance with significant upregulation of defense response genes. Knockout lines of OsHCAR exhibited spotted leaf phenotype, cell death, leaf senescence, and showed increased resistance to the bacterial pathogen Xanthomonas oryzae pv. oryzae (Xoo) coupled with upregulation of five pathogenesis-related marker genes. The overexpression of OsHCAR resulted in increased susceptibility to Xoo with decreased expression of pathogenesis-related marker genes. Altogether, our findings revealed that OsHCAR is involved in regulating cell death and defense response against bacterial blight pathogen in rice.  相似文献   

2.
Efficient accumulation of flavonoids is important for increased tolerance to biotic stress. Although several plant defense mechanisms are known, the roles of many pathways, proteins, and secondary metabolites in stress tolerance are unknown. We generated a flavanone 3-hydroxylase (F3H) overexpressor rice line and inoculated Xanthomonas Oryzae pv. oryzae and compared the control and wildtype inoculated plants. In addition to promoting plant growth and developmental maintenance, the overexpression of F3H increased the accumulation of flavonoids and increased tolerance to bacterial leaf blight (BLB) stress. Moreover, leaf lesion length was higher in the infected wildtype plants compared with infected transgenics. Kaempferol and quercetin, which scavenge reactive oxygen species, overaccumulated in transgenic lines compared with wildtypes in response to pathogenic infection, detected by scanning electron microscopy and spectrophotometry. The induction of F3H altered the antioxidant system and reduced the levels of glutathione peroxidase activity and malondialdehyde (MDA) contents in the transgenic lines compared with the wildtypes. Downstream gene regulation analysis showed that the expression of F3H increased the regulation of flavonol synthase (FLS), dihydroflavonol 4-reductase (DFR), and slender rice mutant (SLR1) during BLB stress. The analysis of SA and JA signaling revealed an antagonistic interaction between both hormones and that F3H induction significantly promoted SA and inhibited JA accumulation in the transgenic lines. SA-dependent nonexpressor pathogenesis-related (NPR1) and Xa1 showed significant upregulation in the infected transgenic lines compared with the infected control and wildtype lines. Thus, the overexpression of F3H was essential for increasing BLB stress tolerance.  相似文献   

3.
Rice bacterial blight caused by Xanthomonas oryzae pv. oryzae (Xoo) seriously affects rice yield production. The discovery and application of broad-spectrum resistance genes are of great advance for disease resistance breeding. Previously, we identified that multiple receptor-like kinase (RLK) family gene deletions induced by the Ac/Ds system resulted in a lesion mimic symptom. In this study, the mutant #29 showed that this lesion mimic symptom was isolated. Further analysis identified that four RLK genes (RLK19-22) were deleted in the #29 mutant. The #29 mutant exhibited broad-spectrum resistance to Xoo and subsequent analyses identified that pathogenesis-related genes PR1a, PBZ1, and cellular H2O2 levels were significantly induced in the mutant compared to wild-type plants. A genetic analysis revealed that reconstruction of RLK20, RLK21, or RLK22 rescued the lesion mimic symptom of the #29 mutant, indicating that these three RLKs are responsible for broad-spectrum resistance in rice. Further yeast two hybrid and bimolecular fluorescence complementation assays demonstrated that RLK20 interacts with RBOHB, which is a ROS producer in plants. Compared to wild-type plants, the #29 mutant was more, while #29/RLK20 ox was less, susceptible to MV (methyl-viologen), an ROS inducer. Co-expression of RLK20 and RBOHB reduced RBOHB-promoted H2O2 accumulation in the cells. Taken together, our research indicated that the RLKs may inhibit RBOHB activity to negatively regulate rice resistance to Xoo. These results provide the theoretical basis and valuable information about the target genes necessary for the successful breeding of rice cultivars resistant to bacterial blight.  相似文献   

4.
5.
6.
7.
8.
Copper-based bactericides have appeared as a new tool in crop protection and offer an effective solution to combat bacterial resistance. In this work, two copper nanoparticle products that were previously synthesized and evaluated against major bacterial and fungal pathogens were tested on their ability to control the bacterial spot disease of tomato. Growth of Xanthomonas campestris pv. vesicatoria, the causal agent of the disease, was significantly suppressed by both nanoparticles, which had superior function compared to conventional commercial formulations of copper. X-ray fluorescence spectrometry measurements in tomato leaves revealed that bioavailability of copper is superior in the case of nanoparticles compared to conventional formulations and is dependent on synthesis rather than size. This is the first report correlating bioavailability of copper to nanoparticle efficacy.  相似文献   

9.
创制农药噻唑锌对水稻细菌性病害的田间药效   总被引:7,自引:0,他引:7  
魏方林  戴金贵  许丹倩  李俊  朱洪斌  朱国念 《农药》2007,46(12):810-811
噻唑锌是噻二唑类有机锌杀菌剂,对水稻细菌性病害有较好的防治效果。两次药后14d调查结果表明,对水稻白叶枯病,20%噻唑锌SC225—375g a.i./hm^2防治效果均极显著高于20%叶枯唑WP300g a.i./hm^2的防治效果;对水稻细菌性条斑病,20%噻唑锌SC 300~375g a.i./hm^2防治效果极显著高于20%叶枯唑WP 300g a.i./hm^2的防治效果,225g a.i./hm^2防治效果与20%叶枯唑WP 300g a.i./hm^2的防治效果相当。生产上使用20%噻唑锌SC,推荐剂量为225-375g a.i./hm^2,间隔7d左右,连续施药两次,对水稻白叶枯病、水稻细菌性条斑病均有较好的防治效果。  相似文献   

10.
Antimicrobial peptides (AMPs) have natural antibacterial activities that pathogens find difficult to overcome. As a result of this occurrence, AMPs can act as an important substitute against the microbial resistance. In this study, we used plate confrontation tests to screen out 20 potential endophytes from potato tubers. Among them, endophyte F5 was found to significantly inhibit the growth of five different pathogenic fungi. Following that, phylogenetic analysis revealed that the internal transcribed spacer (ITS) sequences were 99% identical to Chaetomium globosum corresponding sequences. Thereafter, the Bacillus subtilis expression system was used to create a C. globosum cDNA library in order to isolate the resistance genes. Using this approach, the resistance gene screening technology in the indicator bacteria built-in library was used to identify two antimicrobial peptides, CgR2150 and CgR3101, with broad-spectrum antibacterial activities. Furthermore, the results showed that CgR2150 and CgR3101 have excellent UV, thermal, and enzyme stabilities. Also, these two peptides can significantly inhibit the growth of various bacteria (Xanthomonas oryzae pv. oryzae, Xanthomonas oryzae pv. oryzicola, Clavibacter michiganensis, and Clavibacter fangii) and fungi (Fusarium graminearum, Rhizoctonia solani, and Botrytis cinerea). Scanning electron microscopy (SEM) observations revealed that CgR2150 and CgR3101 peptides act against bacteria by disrupting bacterial cell membranes. Moreover, hemolytic activity assay showed that neither of the two peptides exhibited significant hemolytic activity. To conclude, the antimicrobial peptides CgR2150 and CgR3101 are promising in the development of a new antibacterial agent and for application in plant production.  相似文献   

11.
This study focuses on a commercial plant elicitor based on chitooligosaccharides (BIG®), which aids in rice plant growth and disease resistance to bacterial leaf blight (BLB). When the pathogen (Xoo) vigorously attacks rice that has suffered yield losses, it can cause damage in up to 20% of the plant. Furthermore, Xoo is a seed-borne pathogen that can survive in rice seeds for an extended period. In this study, when rice seeds were soaked and sprayed with BIG®, there was a significant increase in shoot and root length, as well as plant biomass. Furthermore, BIG®-treated rice plants showed a significant reduction in BLB severity of more than 33%. Synchrotron radiation-based Fourier transform infrared (SR-FTIR) analysis was used to characterize BIG®’s mechanism in the chemical structure of rice leaves. The SR-FTIR results at 1650, 1735, and 1114 cm−1 indicated changes in biochemical components such as pectins, lignins, proteins, and celluloses. These findings demonstrated that commercial BIG® not only increased rice growth but also induced resistance to BLB. The drug’s target enzyme, Xoo 1075 from Xanthomonas oryzae (PDB ID: 5CY8), was analyzed for its interactions with polymer ingredients, specifically chitooligosaccharides, to gain molecular insights down to the atomic level. The results are intriguing, with a strong binding of the chitooligosaccharide polymer with the drug target, revealing 10 hydrogen bonds between the protein and polymer. Overall, the computational analysis supported the experimentally demonstrated strong binding of chitooligosaccharides to the drug target.  相似文献   

12.
Metacaspases, a class of cysteine-dependent proteases like caspases in animals, are important regulators of programmed cell death (PCD) during development and stress responses in plants. The present study was focused on comprehensive analyses of expression patterns of the rice metacaspase (OsMC) genes in response to abiotic and biotic stresses and stress-related hormones. Results indicate that members of the OsMC family displayed differential expression patterns in response to abiotic (e.g., drought, salt, cold, and heat) and biotic (e.g., infection by Magnaporthe oryzae, Xanthomonas oryzae pv. oryzae and Rhizoctonia solani) stresses and stress-related hormones such as abscisic acid, salicylic acid, jasmonic acid, and 1-amino cyclopropane-1-carboxylic acid (a precursor of ethylene), although the responsiveness to these stresses or hormones varies to some extent. Subcellular localization analyses revealed that OsMC1 was solely localized and OsMC2 was mainly localized in the nucleus. Whereas OsMC3, OsMC4, and OsMC7 were evenly distributed in the cells, OsMC5, OsMC6, and OsMC8 were localized in cytoplasm. OsMC1 interacted with OsLSD1 and OsLSD3 while OsMC3 only interacted with OsLSD1 and that the zinc finger domain in OsMC1 is responsible for the interaction activity. The systematic expression and biochemical analyses of the OsMC family provide valuable information for further functional studies on the biological roles of OsMCs in PCD that is related to abiotic and biotic stress responses.  相似文献   

13.
Walnut blight is a significant above-ground disease of walnuts caused by Xanthomonas arboricola pv. juglandis (Xaj). The secreted form of chorismate mutase (CM), a key enzyme of the shikimate pathway regulating plant immunity, is highly conserved between plant-associated beta and gamma proteobacteria including phytopathogens belonging to the Xanthomonadaceae family. To define its role in walnut blight disease, a dysfunctional mutant of chorismate mutase was created in a copper resistant strain Xaj417 (XajCM). Infections of immature walnut Juglans regia (Jr) fruit with XajCM were hypervirulent compared with infections with the wildtype Xaj417 strain. The in vitro growth rate, size and cellular morphology were similar between the wild-type and XajCM mutant strains, however the quantification of bacterial cells by dPCR within walnut hull tissues showed a 27% increase in XajCM seven days post-infection. To define the mechanism of hypervirulence, proteome analysis was conducted to compare walnut hull tissues inoculated with the wild type to those inoculated with the XajCM mutant strain. Proteome analysis revealed 3296 Jr proteins (five decreased and ten increased with FDR ≤ 0.05) and 676 Xaj417 proteins (235 increased in XajCM with FDR ≤ 0.05). Interestingly, the most abundant protein in Xaj was a polygalacturonase, while in Jr it was a polygalacturonase inhibitor. These results suggest that this secreted chorismate mutase may be an important virulence suppressor gene that regulates Xaj417 virulence response, allowing for improved bacterial survival in the plant tissues.  相似文献   

14.
The effect of ozone on Xanthomonas oryzae pv. oryzae, a bacterium causing leaf blight disease in Paddy (Oryza sativa), was studied in culture. Viability of this pathogen was lost by flushing ozone at a flow rate of 300 ml/min for 3 minutes in culture condition. The inhibitory effect was dependant on cell concentration and time. With a cell concentration of 0.008 OD at 540 nm, the inhibition of the bacterium was total and no growth was observed in nutrient agar plates even after 36 hrs. With higher concentrations of cells (0.08 OD and above) the bacterium survived, though there was a bacteriostatic effect initially. Conductivity of the cell suspension increased after ozone treatment owing to altered cell membrane permeability and subsequent release of cellular contents. As the bacterium is seed borne, washing the paddy seeds with ozonized water would help control the bacterial blight of rice, the most serious disease of rice in Asia.  相似文献   

15.
以水稻黄单胞菌等植物病原菌为指示菌,采用平板对峙法对411株海洋细菌进行了抗菌筛选,初筛获得具有抗菌活性的海洋菌株81株,复筛获得具有稳定抗菌活性的菌株7株,最后通过测定抗菌谱,得到1株抗菌谱特异并且稳定拮抗水稻黄单胞菌的深海独岛枝芽胞杆菌(Virgibacillus dokdonensis)A493.对水稻白叶枯病害的温室生防实验表明,经过A493无菌发酵上清波处理,水稻生长20 d后对水稻白叶枯病害的防治效果达到了66.7%,且对水稻的正常生长无不良影响.通过离子交换色谱法提取,再经2次薄层层析硅胶板回收分离,得到了纯化活性物质,经过ESI-MS"分析,初步判断活性物质分子量为317 Da.Doskochilova系统纸层析结果显示活性物质很可能为新的氨基糖苷类物质.  相似文献   

16.
The Gram-negative bacterium Pseudomonas taiwanensis is a novel bacterium that uses shrimp shell waste as its sole sources of carbon and nitrogen. It is a versatile bacterium with potential for use in biological control, with activities including toxicity toward insects, fungi, and the rice pathogen Xanthomonas oryzae pv.oryzae (Xoo). In this study, the complete 5.08-Mb genome sequence of P. taiwanensis CMS was determined by a combination of NGS/Sanger sequencing and optical mapping. Comparison of optical maps of seven Pseudomonas species showed that P. taiwanensis is most closely related to P. putida KT 2400. We screened a total of 11,646 individual Tn5-transponson tagged strains to identify genes that are involved in the production and regulation of the iron-chelator pyoverdine in P. taiwanensis, which is a key anti-Xoo factor. Our results indicated that the two-component system (TCS) EnvZ/OmpR plays a positive regulatory role in the production of pyoverdine, whereas the sigma factor RpoS functions as a repressor. The knowledge of the molecular basis of the regulation of pyoverdine by P. taiwanensis provided herein will be useful for its development for use in biological control, including as an anti-Xoo agent.  相似文献   

17.
Lesion mimic mutants (LMMs) have been widely used in experiments in recent years for studying plant physiological mechanisms underlying programmed cell death (PCD) and defense responses. Here, we identified a lesion mimic mutant, lm212-1, which cloned the causal gene by a map-based cloning strategy, and verified this by complementation. The causal gene, OsPHD1, encodes a UDP-glucose epimerase (UGE), and the OsPHD1 was located in the chloroplast. OsPHD1 was constitutively expressed in all organs, with higher expression in leaves and other green tissues. lm212-1 exhibited decreased chlorophyll content, and the chloroplast structure was destroyed. Histochemistry results indicated that H2O2 is highly accumulated and cell death is occurred around the lesions in lm212-1. Compared to the wild type, expression levels of defense-related genes were up-regulated, and resistance to bacterial pathogens Xanthomonas oryzae pv. oryzae (Xoo) was enhanced, indicating that the defense response was activated in lm212-1, ROS production was induced by flg22, and chitin treatment also showed the same result. Jasmonic acid (JA) and methyl jasmonate (MeJA) increased, and the JA signaling pathways appeared to be disordered in lm212-1. Additionally, the overexpression lines showed the same phenotype as the wild type. Overall, our findings demonstrate that OsPHD1 is involved in the regulation of PCD and defense response in rice.  相似文献   

18.
李发林  李楷 《云南化工》1997,(4):48-50,52
通过小区试验及62组同田对比示范实收亩产证实,硅肥亩施30~50kg,可增产稻谷5.9%~17.1%,其处理间“F”值及“t”测验垃达显著标准,其增产原因于促进秧苗早生,快发,对水稻白叶枯病可以缓解,提高稻谷的经济性状,其结论与河南省研究结果基本一致。  相似文献   

19.
Xanthomonas citri pv. citri (Xcc) and X. citri pv. aurantifolii (Xca), causal agents of citrus bacterial canker, are both regulated by the European Union to prevent their introduction. Xcc is responsible for severe outbreaks of citrus production worldwide, therefore, a prompt and reliable detection is advisable for the early detection of this bacterium either in symptomatic or asymptomatic plant material. The current EPPO (European and Mediterranean Plant Protection Organization) diagnostic protocol, PM 7/44(1), includes several diagnostic tests even if new assays have been developed in the latter years for which validation data are needed. Recently, a test performance study was organized within the Valitest EU Project to validate Xcc diagnostic methods and provide evidence on the most reliable assays; however, the influence of DNA extraction methods (DEM) on the reliability of the detection has never been assessed. In this study we evaluate four different DEM, by following two different approaches: (i) a comparison by real-time PCR standard curves of bacterial DNA versus bacterial DNA added to plant DNA (lemon, leaves and fruit; orange fruit); and (ii) the evaluation of performance criteria of spiked samples (plant extract added with ten-fold diluted bacterial suspensions at known concentrations). Droplet digital PCR is developed and compared with real-time PCR, as the detection method.  相似文献   

20.
Banana is an important staple food crop and a source of income for smallholder farmers in about 150 tropical and sub-tropical countries. Several bacterial diseases, such as banana Xanthomonas wilt (BXW), blood, and moko disease, cause substantial impacts on banana production. There is a vast yield gap in the production of bananas in regions where bacterial pathogens and several other pathogens and pests are present together in the same field. BXW disease caused by Xanthomonas campestris pv. musacearum is reported to be the most destructive banana disease in East Africa. The disease affects all the banana varieties grown in the region. Only the wild-type diploid banana, Musa balbisiana, is resistant to BXW disease. Developing disease-resistant varieties of bananas is one of the most effective strategies to manage diseases. Recent advances in CRISPR/Cas-based gene editing techniques can accelerate banana improvement. Some progress has been made to create resistance against bacterial pathogens using CRISPR/Cas9-mediated gene editing by knocking out the disease-causing susceptibility (S) genes or activating the expression of the plant defense genes. A synopsis of recent advancements and perspectives on the application of gene editing for the control of bacterial wilt diseases are presented in this article.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号