首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Lignin of high purity can be separated from black liquor using the LignoBoost process, of which the overall efficiency is largely dependent on the precipitation yield of lignin, which depends on the properties of black liquor and process conditions. In this paper, the influences of process conditions on the precipitation yield of lignin from mixed hardwood/softwood black liquor were investigated. The Klason and standard UV method were used to determine lignin concentration. The chemical and structural properties of lignin were also analyzed. The results showed that the precipitation yield of lignin increased along with a decrease in pH and temperature, or with an increase in the ion strength of black liquor, and the yield was lower when mixed softwood/hardwood black liquor was used. It also showed that at a higher precipitation yield the precipitated lignin had a lower average molecular weight but had higher methoxyl and phenolic hydroxyl content.  相似文献   

2.
The composition and absolute amount of neutral sugars were determined for 48 hardwood species (including 17 hardwoods of genera Acacia, 14 hardwoods of genera Eucalyptus, and 17 hardwoods of other genera) and 14 softwood species by alditol-acetate method, and their relationships to the syringyl ratio (syringyl/(syringyl+guaiacyl)) of lignin, which was determined by nitrobenzene oxidation, was investigated. In the hardwood species, an increase in the syringy ratio of lignin correlated with a tendency toward increased xylose/glucose, rhamnose/glucose, and arabinose/glucose ratios. However, the absolute amount of glucose in hardwood was maintained in a small range (0.4–0.5 g in 1 g sample), independent of changes in the syringyl ratio. In the softwood species, with increasing lignin content, the mannose/glucose ratio decreased, but the absolute amount of glucose remained almost constant. In both hardwood and softwood species, a strong correlation was suggested between lignin, indicated by higher syringy ratio, and hemicellulose, indicated by higher xylan/mannan ratio.  相似文献   

3.
The protocol of alkaline nitrobenzene oxidation was investigated to improve its ability to identify the different lignin structures for both woody and non-woody biomass. The survival factors of all six oxidation products—syringaldehde (Sr), vanillin (V), p-hydroxybenzaldehyde (B) and their corresponding acids, syringic acid (Sa), vanillic acid (Va), and p-hydroxybenzoic acid (Ba)—were studied at 170, 180, and 190°C for several residence times. Under similar conditions, various lignin model compounds—a softwood (loblolly pine), a hardwood (red maple), and a non-wood raw material (corn stover)—were oxidized. Molar yields of oxidation products were determined and the ratios of (Sr+Sa)/(V+Va), (Sr/V), and B/(V+Va) (B/V) were calculated. All oxidation products were relatively stable at 170 and 180°C but showed some degradation at 190°C, especially at long residence time. In all cases, p-hydroxybenzoic acid was barely detectable. While yields of oxidation products reach a maximum at 170°C for pine and maple, maximal yields of corn stover require 190°C. Consequently, we recommend that nitrobenzene oxidation be carried out at 170°C for 2.5 h for softwood and hardwood, but at 190°C and 4 h with correction for the survival factors for corn stover and other non-woody biomass. Alternatively, a protocol of oxidation at two temperatures is recommended for non-woody biomass.  相似文献   

4.
Abstract

The interactions of Optical Brightening Agents (OBA) with High Yield Pulp (HYP) fibers under two methods of OBA addition were evaluated on a softwood TMP and hardwood (aspen) HYP: OBA added to the peroxide bleach liquor (Method A), and OBA added conventionally at the wet end (Method B). The treated pulps were fractionated and OBA retention and efficiency in each fraction were determined. Adding OBA to the bleach liquor gave a higher OBA retention than adding OBA at the wet end; the hardwood HYP had a higher OBA brightening efficiency than the softwood TMP. The results are explained in terms of pulp morphology, lignin content, and process conditions (temperature and contact time). Adding OBA to the mechanical pulp also improved the brightness stability during the light-induced yellowing process.  相似文献   

5.
A hardwood kraft lignin (obtained by precipitating an industrial black liquor with a solution of calcium salt in alcohol) was oxidized in alkaline medium to obtain phenolic compounds (syringaldehyde, vanillin, syringic acid and vanillic acid). Nitrobenzene and copper (II) oxide were the oxidants employed. Influence of temperature, reaction time and oxidant concentration on yield and product distribution were studied. The results show that nitrobenzene is a more effective oxidant (15–18 % of aldehydes on kraft lignin) than copper (II) oxide (7–8 %). Product distribution showed the highest aldehyde selectivity for nitrobenzene, due to the presence of two additional oxidation products in the copper oxide oxidations. In the oxidation to aldehydes, the alcohol-calcium precipitated kraft lignin is a better raw material than other precipitated kraft lignin.  相似文献   

6.
The reactions of carbohydrates with anthraquinones in alkaline pulping processes are reviewed. AQ reacts mainly with the short-lived intermediates that are formed in the degradation reactions of wood polysaccharides. Oxidation of the reducing end groups of polysaccharides to stable aldonic acid end groups is marginal and corresponds to less than 1 % of all reactions of AQ. The stabilization of the polysaccharides may be enhanced by the use of salts of alkaline earth metals which increase the relative oxidation rate of sugar enediols and promote the hydride shift reaction of the intermediate aldos-2-ulose end groups to stable hexonic acid end groups. Analysis of the monomeric carbohydrate-derived oxidation products indicates that hardwood lignin probably contains more structures that react with anthrahydroquinone than does softwood lignin. This difference may partly explain the more facile delignification of hardwoods.  相似文献   

7.
Biopolyurethane prepared from liquefied wood with the residue of the liquefied wood product was investigated in this article. Previous results indicated that the residue of the liquefaction product was composed mostly of compounds originated from lignin. The chemical structures of lignin in softwood and hardwood are different. The influence of soft‐ and hardwood species on the chemical structure and mechanical properties of biopolyurethane prepared from liquefied wood with residue was investigated by tensile testing and Fourier transform infrared spectroscopy. The experimental results showed that the liquefaction of softwood occurs within a shorter time than that of hardwood and the biopolyurethane prepared from softwood was harder than that prepared from hardwood, which suggests that the properties of the liquefaction product and biopolyurethane are influenced by the chemical structure of the lignin. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

8.
袁珍珍  楼宏铭  周明松  黄锦浩 《精细化工》2014,31(11):1360-1364
以碱法制浆的松木黑液为原料,用二氧化碳酸化黑液提取其中的木质素,考察了反应温度(40~80℃)对酸析木质素产率及其无机盐和糖分等含量的影响,采用凝胶渗透色谱(GPC)、离子色谱仪(IC)、元素分析仪和热重分析仪(TG)对木质素产物进行结构表征。结果表明,温度升高不利于木质素析出,产率下降;但较高温度下制备的木质素中无机盐、糖分及硫含量低,纯度高;同时温度越高,木质素相对分子质量越大,甲氧基含量增大,但酚羟基含量减小。TG和DTG曲线显示,反应温度升高木质素最大失重速率增加,残余量减少。  相似文献   

9.
Abstract

The behavior of lignin during kraft (hardwood, softwood, and wheat straw) and soda-AQ (wheat straw) pulping was studied, mainly in terms of delignification degree and molecular mass distribution (MMD). In the initial delignification phase (at 140°C for 15–60 min), a prominent part of the dissolved softwood kraft lignin (18–25 g/L, MM mostly > 3,000 Da) was found in the liquid phase of chip cavities, rather than in the external bulk black liquor (5–7 g/L, MM mostly < 3,000 Da). The maximum weight average MM values ( w) of the soluble lignin under conventional cooking conditions were detected for the kraft softwood (4,100 Da), and kraft birch (3,400 Da) when the degree of delignification was 65–75%, corresponding to a residual lignin content of 5–10%. The maximum w of the dissolved wheat straw kraft (5,050 Da) and soda-AQ (5,900 Da) lignins was clearly higher than that of wood-based kraft lignins (2,950–4, 100 Da).  相似文献   

10.
Fourier transform infrared spectroscopy ( FTIR) was used to determine characteristic absorption peaks of softwood kraft lignin and soda hardwood lignin. Remarkable spectral differences were noticed between the different lignins due to their various chemical structures. Proton nuclear magnetic resonance spectrometry (1H NMR) was employed to analyze the structure of lignin. Matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry ( MALDI‐TOF) provided important data regarding the molecular weight distribution of lignin. Thermal stability of softwood lignin was found to be remarkably higher than that of hardwood lignin. Softening temperature and glass transition temperature of lignin were measured by differential scanning calorimetry (DSC) which was useful in selecting an optimal temperature profile during extrusion process. Rheological studies provided valuable information about the viscosity of lignins. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

11.
Lignin, a polyphenolic molecule, is a major constituent of flax shives. This polyphenolic molecular structure renders lignin a potential source of a variety of commercially viable products such as fine chemicals. This work compares the performance of different lignin isolation methods. Lignin from flax shive was isolated using both conventional alkaline extraction method and a novel experimental pressurized low polarity water (PLPW) extraction process. The lignin yields and chemical composition of the lignin fractions were determined. The conventional alkali treatment with 1.25 M NaOH, heated at 80 °C for 5 h, extracted 92 g lignin per kg flax shives, while lignin yields from the PLPW extracts ranged from 27 to 241 g lignin per kg flax shives. The purity and monomeric composition of the lignins obtained from the different extraction conditions was assessed via UV spectroscopy and alkaline nitrobenzene oxidation. Lignin obtained from conventional alkali treatment with 1.25 M NaOH, heated at 80 °C for 5 h was of low purity and exhibited the lowest yields of nitrobenzene oxidation products. With respect to alkali assisted PLPW extractions, temperature created an opposing effect on lignin yield and nitrobenzene oxidation products. More lignin was extracted as temperature increased, yet the yield of nitrobenzene oxidation products decreased. The low yield of nitrobenzene oxidation products may be attributed to either the formation of condensed structures or the selective dissolution of condensed structures of lignin during the pressurized alkaline high temperature treatment. Analytical pyrolysis, using pyroprobe GC-MS, was used to investigate the molecular composition of the lignin samples. The total yield of pyrolysis lignin products was 13.3, 64.7, and 30.5% for the 1.25 M NaOH extracted lignin, alkaline assisted PLPW extracted lignin, and the unprocessed flax shives, respectively. Key lignin derived compounds such as guaiacol, 4-vinyl guaiacol, 4-methyl guaiacol, syringol, eugenol, isoeugenol, catechol, homocatechol, and vanillin were detected in all of the samples.  相似文献   

12.
Wood lignin contains significant amounts of acid-labile aryl ether units, which play a significant role in lignin modification or delignification processes. We have evaluated the rate and reaction kinetics on the acid-catalyzed cleavages of aryl ether structures for wood lignin in situ based on the formation of phenolic hydroxyl groups. The content of acid-labile aryl ether units was quite uniform for a variety of softwood wood lignins (~4% per C9 unit) and it varied appreciably among hardwood species, ranging from 4% for aspen to 9% for beech wood lignin. These variations, however, appear to be related to the content of syringyl units in wood lignin. The reactivity of these reactive aryl ether structures was noticeably higher for the spruce than for the aspen wood lignin. This difference in reactivity, based on the behavior of lignin model compound reactions, can be attributed to the influence of syringyl moieties in aspen wood lignin. It appears that most of the acid-labile aryl ether units in hardwood were associated with the syringy moiety being present as a benzyl unit, which is much less reactive than the corresponding guaiacyl moiety.  相似文献   

13.
A sequential derivatization of lignin with formaldehyde and phenol was investigated as a means of enhancing lignin's reactivity in phenol-formaldehyde resins. Kraft lignin (KL) and two novel biocon version lignins, steam explosion (SEL) and acid (H2SO4) hydrolysis lignin (AHL), were chemically modified by sequential reaction with formaldehyde and phenol. The results with regard to the chemical structure of the phenolic resin prepolymers showed that the ability to hydroxymethylate and phenolate is related to lignin structure. KL from pine proved to be more amenable to chemical modification with formaldehyde and phenol than was either SEL from aspen or AHL from pine. Degrees of substitution were determined by H-NMR spectroscopy and by oxidative analysis with alkaline permanganate. H-NMR spectroscopy revealed degrees of phenolation of 0.42, 0.29 and 0.21 per average C9-unit for KL, AHL, and SEL, respectively; and permanganate oxidation illustrated that approximately 90%, 60%, and 60% of all available unsubstituted phenolic guaiacyl units in KL, AHL and SEL, but none of the corresponding non-phenolic or syringyl entities, had become derivatized.  相似文献   

14.
The incubation of wood fibres with a phenoloxidase (laccase) results in the oxidation of the lignin crust on the fibre surface which finally is released from the fibre surface into the incubation medium. During this reaction, the lignin is highly oxidized, as can be seen from its high carboxyl content. When fibres treated with the enzyme are pressed together under conditions usually employed during the process of making fibre boards, boards are obtained which meet the required standards for German medium density fibre board (MDF). The enzymatically activated fibres in the wood composites made by this process are bound together in a way which is closer to the situation in the naturally grown wood than any other process used today in the present production of wood composites.  相似文献   

15.
Kraft lignin obtained from the pulping of wood is an interesting new precursor material for carbon fiber production because of its high carbon content and ready availability. However, continuous spinning of softwood kraft lignin (SKL) has been impossible because of its insufficient softening characteristics and neat hardwood kraft lignin (HKL) has required extensive pretreatments to enable fiber formation. Softwood kraft lignin permeate (SKLP) and hardwood kraft lignin permeate (HKLP), fractionated by membrane filtration, were continuously melt spun into fibers. To improve the spinnability of SKL and HKL, HKLP was added as a softening agent. SKL‐ and HKL‐based fibers were obtained by adding 3–98 wt % HKLP. A suitable temperature range for spinning was 20–85°C above the Tg of the lignin samples, and this range gave a flawless appearance according to the SEM analysis. Smooth, homogeneous fibers of SKLP, HKLP, and SKL with HKLP were successfully processed into solid carbon fibers. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

16.
A water-soluble chromophoric xylanase-resitant xylan fraction (LF-D) was separated from a hardwood unbleached kraft pulp (UKP) after hydrolysis with a cellulase/ xylanase-membrane bioreactor. LF-D contained over 70% unremovable inorganic atoms including Si, Na, and S, together with a β-1,4- linked xylan. A nucleus exchange reaction and a nitrobenzene oxidation showed that LF-D contained a trace amount of a lignin component abundant in quinoid structures which had been partly demethylated during the course of kraft pulping. On the other hand, a higher molecular weight residual lignin fraction (HF-P), which was obtained from an impermeable part of the enzymatic digests, was found to have a diphenylmethane structure. LF-D was partially decolorized by Coriolus versicolor and bacterial microflora without action of extracellular lignin peroxidase, Mn-peroxidase, laccase or xylanase.  相似文献   

17.
The electrochemical properties of eighteen natural and synthetic compounds commonly used to expand the oxidative capacity of laccases were evaluated in an aqueous buffered medium using cyclic voltammetry. This clarifies which compounds fulfil the requisites to be considered as redox mediators or enhancers. Cyclic voltammetry was also applied as a rapid way to assess the catalytic efficiency (CE) of those compounds which oxidise a non-phenolic lignin model (veratryl alcohol, VA) and a kraft lignin (KL). With the exception of gallic acid and catechol, all assayed compounds were capable of oxidising VA with varying CE. However, only some of them were able to oxidise KL. Although the oxidised forms of HBT and acetovanillone were not electrochemically stable, their reduced forms were quickly regenerated in the presence of VA. They thus act as chemical catalysts. Importantly, HBT and HPI did not attack the KL via the same mechanism as in VA oxidation. Electrochemical evidence suggests that violuric acid oxidises both substrates by an electron transfer mechanism, unlike the other N-OH compounds HBT and HPI. Acetovanillone was found to be efficient in oxidising VA and KL, even better than the synthetic mediators TEMPO, violuric acid or ABTS. Most of the compounds produced a generalised increase in the oxidative charge of KL, probably attributed to chain reactions arising between the phenolic and non-phenolic components of this complex molecule.  相似文献   

18.
Various softwood and hardwood bark residues, primary sludges and softwood sawdust residues were processed by vacuum pyrolysis in a laboratory scale batch reactor. The pyrolysis oil, water, charcoal, and gas were recovered and analyzed. The pyrolysis oils were analyzed in details for their content in phenolic compounds after derivatization to their acetyl derivatives. The influence of temperature, heating rate, feedstock bed thickness, particle size and feedstock water pretreatment on the yield of phenols was investigated. The highest yield of phenols was obtained when hardwood bark was soaked in water for 48 hours and pyrolyzed at a temperature of 450°C and a heating rate of 10°C/min. Pyrolysis performance was evaluated in terms of total phenolic yield and composition.  相似文献   

19.
An efficient catalytic system to oxidize quantitatively aliphatic diols using Trametes versicolor laccase and TEMPO has been developed in aqueous medium. Oxidations have occurred in a non‐stereoselective fashion but with complete regio‐ and/or monoselectivity, obtaining lactones with excellent purity after simple extraction. This catalytic system has been demonstrated to be scalable, compatible with the presence of a variety of functionalities, and also allowed the successful enzyme recycling using a laccase‐cross‐linked enzyme aggregates (CLEA) preparation.  相似文献   

20.
Black liquor, a side product of chemical pulping, contains hydroxy acids that have many potential applications, e.g., as polymer precursors. Currently there are no feasible separation processes available for recovery of hydroxy acids from such solutions. Neutralization is usually though to be a necessary pre-treatment, but it adds into chemical consumption and may impede the integration of the recovery process to a pulp mill. In this work, an experimental investigation of a new process concept for the recovery and purification of hydroxy acids from soda black liquor without neutralization is presented. The process consists of ultrafiltration, size-exclusion chromatography, ion-exchange, adsorption, and evaporation. Mixtures of hydroxy acids in high purity were produced from black liquor of soda pulping using the process. A reduction of 99% in lignin content of the organic acid fraction was achieved. In the chromatographic separation step, the recovery of sodium hydroxide was almost 100%. The average purities of hydroxy acids isolated from softwood and hardwood black liquors were 81% and 63% on mass basis, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号