首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用ANSYS的热 结构间接耦合、生死单元技术模拟Y型相贯节点的焊接过程;将牛顿-拉普森法和弧长法结合,求解Y型相贯节点极限承载力,给出求解流程;分析支管外径与主管外径比、支管倾角、主管径厚比等几何参数对Y型相贯节点极限承载力的影响,将考虑和不考虑焊接残余应力的计算结果进行对比分析。研究结果表明:焊接残余应力降低了Y型相贯节点的极限承载力;支管外径与主管外径比β越大,主管的径厚比γ越小,支管倾角θ越小,则Y型相贯节点极限承载力降低越多;结构设计时,保证强度和安全的前提下选择合适的支管外径、主管壁厚和支管倾角,可减小焊接残余应力对Y型相贯节点极限承载力的影响。  相似文献   

2.
采用计算机模拟仿真方法,对空间钢管-板XX型节点进行参数分析。研究了不同的支管加载比例、几何参数和主管应力比对空间钢管-板XX型节点的破坏模式和极限承载力的影响。结果表明:节点板间的夹角不同时,支管加载比例对节点极限承载力的影响规律有很大差异;主管应力比无论正负均会引起节点极限承载力的降低。在此基础上,通过对数值结果的回归分析,考虑了节点板间的夹角和支管加载比例的空间影响效应,提出适用于该类节点的极限承载力公式。  相似文献   

3.
N型圆钢管相贯节点力学性能的试验研究   总被引:3,自引:0,他引:3  
对承受支管轴力和主管轴力的N型圆钢管相贯节点、垫板加强节点、主管填充混凝土节点、主管填充混凝土和垫板加强节点试件进行了试验研究.综合比较了4种节点在破坏模式、受压支管荷载-主管管壁变形关系、主管管壁等效应力分布和极限承载力等方面的差异.试验结果表明,不同加强措施导致不同的节点破坏模式.填充混凝土能显著提高节点极限承载力,而加垫板提高幅度不大,但当主管径向刚度已经很大时,对主管加垫板可能反而降低节点的极限承载力.运用有限元方法对试验节点进行了非线性分析,得到了各试验节点的破坏模式、极限承载力、荷载-变形过程并与试验结果进行了比较.结果显示,二者吻合较好.  相似文献   

4.
赵俊钊  陈颖 《工业建筑》2019,(1):163-169
为分析开洞T形圆钢管相贯节点极限承载力,确定开洞率对节点极限承载力的影响规律,并给出T形圆钢管相贯节点的开洞设计建议。首先对支管轴心受力T形圆钢管相贯节点的受力机理进行了阐述,建立了参数化节点有限元计算模型,参数包括:支主管管径比、支主管管壁厚度比、开洞率和支管受力状态,并对160个支管轴心受力节点模型进行了非线性有限元分析。结果表明:开洞对支管轴心受拉节点的影响大于支管轴心受压节点;其他条件不变时,支管壁厚越大,极限承载力也越大;满足一定条件时,支管轴心受压T形圆钢管相贯节点开洞率可取到0. 5,而支管轴心受拉节点开洞率只可取到0. 25。  相似文献   

5.
郭天裕  祝磊  杨倩  李培阳 《建筑科学》2021,37(11):124-131
圆钢管结构由于受力性能好、施工方便、外形美观的特点,广泛应用于建筑大跨度结构和海洋平台结构中.现有研究及实际工程表明,钢管结构破坏最容易在节点焊接处发生,因此有必要加强钢管结构的节点区域,以提高整体结构的承载性能.本文提出一种圆形钢主管与支管的新型焊接连接节点,包括主管、矩形固定钢板、前部弧形固定钢板、后部弧形固定钢板、连接垫板、支管.首先利用ABAQUS软件建立了有限元模型并准确模拟了用外加劲肋加强T形圆钢管节点的试验研究.在此基础上,对3个不同主管支管外径比(β)的新型T形圆钢管节点在轴压作用下的极限承载性能进行了有限元分析.之后为了研究影响新型节点极限承载性能的因素,对连接垫板边长和矩形固定钢板高度进行了参数化分析.结果表明,对于T1节点,当矩形固定钢板高度与支管直径比不变,连接垫板边长与支管直径比从1.1提高到1.6时,极限承载力提高了33.1%;对于T2节点,当矩形固定钢板高度与支管直径比不变,连接垫板边长与支管直径比从1.1提高到1.6时,极限承载力提高了 45.0%.当连接垫板边长与支管直径比不变,矩形固定钢板高度与支管直径比从0.2提高到0.5时,T1和T2节点的极限承载力几乎没有变化.  相似文献   

6.
K型圆钢管搭接节点极限承载力研究   总被引:16,自引:6,他引:16       下载免费PDF全文
钢管搭接节点是一种在空间结构中常见的节点形式,本文对平面K型圆钢管搭接节点的极限承载力进行了非线性有限元分析。结果表明:随着支主管直径比、支主管厚度比、主管径厚比和搭接率的变化,节点发生支管轴向屈曲破坏、支管局部屈曲破坏和支主管联合屈曲破坏三种破坏模式。在支主管厚度比分别为0.4、0.7和1.0,且搭接率为20%~60%时,与相应的间隙节点极限承载力的比值分别在0.95~1.06、0.95~1.61和1.17~1.27之间;与规范公式承载力计算结果的比值分别为小于1.0、在0.99~1.51和1.33~2.17之间。研究表明,圆钢管搭接节点的受力性能与有间隙的相贯节点有明显的差别,设计计算时应分别考虑。  相似文献   

7.
基于有限元方法对空间多支管焊接相贯节点的应力分布、变形分布及节点域塑性区的扩展过程等力学性能进行分析.主要探讨支管不同受力特征、节点域构造不同措施和加劲板厚度对节点极限承载力的影响,并与规范推荐公式进行对比.分析结果表明:该相贯节点极限承载力为设计载荷的2.85倍,节点构造合理且安全可靠;支管不同受力特征对节点极限承载力影响较大,尤其以平面外杆件受拉较为不利,最大削弱10.9%;节点域不同构造措施对节点承载力有一定影响,横隔板数量不起决定作用,而与位置有关,最大相差4.9%;加劲板厚度对承载力影响不大,仅相差2.4%.  相似文献   

8.
以塔桅工程中空间圆钢管相贯节点为背景,应用有限元程序对其进行轴向拉、压极限状态的数值模拟.分析节点在荷载作用下局部应力分布、主管鞍点的荷载变形关系,对支管搭接的影响、应力集中系数和节点极限承载力进行探讨,提出在节点区局部采用钢管混凝土改善受力条件的可行性.  相似文献   

9.
矩形钢管混凝土K型节点受力性能试验   总被引:7,自引:4,他引:7  
对6个矩形钢管混凝土K型节点和1个矩形钢管K型节点进行了受力性能试验研究,结合Packer试验结果,对矩形钢管混凝土K型节点的破坏模式及节点间隙对节点性能的影响进行了分析,并和矩形钢管节点进行对比,推导了K型节点与Y型节点的判别式。试验结果表明:矩形钢管混凝土K型节点没有发生屈服线破坏模式,节点极限承载力得到了有效的提高;受拉支管破坏模式与矩形钢管节点相似,为冲剪破坏和有效宽度破坏;在满足受压支管承载力的前提下,受压支管为横向局部承压破坏模式;当受压支管宽厚比较大时,可不考虑节点间隙对节点承载力的影响;当受压支管宽厚比较小、节点间隙较大时,需考虑节点间隙对节点极限承载力的影响。  相似文献   

10.
为研究退火处理及几何参数对矩形管节点滞回性能的影响,对2组Y形矩形管-管节点及2组Y形纵向板-矩形管节点进行了拟静力试验。每组包含2个几何尺寸相同的试件,对其中一个进行去应力退火处理。将节点弦管底面中部固定,对支管施加轴向往复荷载。试验中裂缝在节点的弦管上表面出现,沿弦管与连接件(支管或节点板)的连接焊缝外围发展并穿透弦管壁,导致节点失效。节点的耗能机制为弦管上表面塑性变形。分析发现:退火导致节点的极限承载力减小,延性比、累积延性比、累积能量耗散比增大;随支弦管夹角增大,管-管节点极限承载力、累积延性比、累积能量耗散比减小;随节点板长度增加,板-管节点的极限承载力、累积延性比、累积能量耗散比增大。  相似文献   

11.
复杂空间相贯节点广泛应用于大型空间结构中,目前规范尚无正确完善公式计算其承载力.为研究这类复杂空间相贯节点的受力性能和提出合理的构造改进措施,根据某实际工程,选择同时承受较大轴力和弯矩的XX形空间相贯节点进行有限元分析,并提出5种改进措施来改善节点的力学性态.分析结果表明,增加首先“破坏”支管的壁厚不能显著提高极限承载力;支管与主管汇交处设置加劲肋可以改善节点域的应力分布;在靠近节点域的支管内设置加强板可提高节点极限承载力;支管与主管之间交汇处设置贯穿加劲肋可显著减小主管的变形.  相似文献   

12.
基于N形方主管圆支管搭接节点的试验,从节点破坏模式、变形过程和承载力等方面对N形方主管圆支管搭接节点的非线性有限元模型进行了校验。采用验证的有限元分析模型,分析了被搭接支管受拉且内隐蔽部分焊接的搭接节点的应力分布、塑性区扩展和破坏模式,以及几何参数、内隐蔽部分焊接与否、支管轴力性质、主管轴力等因素对节点性能的影响。分析结果表明:支主管径宽比、主管宽厚比、支主管壁厚比是影响N形方主管圆支管搭接节点破坏模式和承载性能的主要因素;内隐蔽部分未焊接对被搭接支管受压的节点承载力影响较小,但对被搭接支管受拉的节点承载力影响较大;支管轴力性质、主管轴压力对N形方主管圆支管搭接节点承载力的影响不可忽视。应用多元线性回归方法,在GB 50017-2003《钢结构设计规范》现有承载力计算公式基础上,拟合出了考虑相关影响系数的修正计算式;按修正计算式计算得到的承载力与试验结果吻合良好,且具有较好的适用性。  相似文献   

13.
通过6个足尺模型节点的平面外弯曲加载试验,对上海光源工程屋盖结构中X型圆钢管节点的破坏形态、刚度、承载力及应力分布等进行了系统研究。试验和有限元分析结果表明,节点平面外弯曲失效主要表现为显著的主管塑性变形和焊缝断裂;主、支管弯曲方向对节点初始刚度影响不大,但对极限承载力有一定影响;节点刚度与支管线刚度的比值是判断节点刚性程度的关键指标;节点相贯线区域的不均匀刚度分布导致与其相邻的支管根部截面出现显著的边缘应力放大现象。基于极限变形限值确定的节点实测承载力与各国规范公式计算值的比较表明,API推荐的公式对X型钢管节点平面外抗弯强度提供了较准确的预测。  相似文献   

14.
岑迪钦  张瑞  高博青 《空间结构》2019,25(2):69-73,45
金华体育中心体育场屋盖采用双层钢网壳结构,端部大拱采用管桁架.在对屋盖结构进行满应力优化设计的基础上,考虑结构初始缺陷,对屋盖结构在两种典型工况下的稳定性进行了分析.同时按照管桁架主管或支管应力最大的原则选取8种工况,对相贯节点进行了有限元分析.结果表明,在满跨荷载和半跨荷载两种典型工况下,该屋盖结构均具有较高的极限承载力.在管桁架相贯节点处,普遍存在应力集中现象,通过主管外局部加套管,既能有效减少应力集中现象,又能使节点处的应力分布更加均匀.  相似文献   

15.
应用双重非线性有限元对空间效应影响下的KX型圆钢管相贯节点进行了广泛的数值分析,分别获得了几何效应和荷载效应影响下节点的破坏模式与极限承载力.不同支腹杆轴力比下引起空间KX节点发生弦杆管壁局部屈曲破坏模式的原因主要有三种,即轴力比较小为负、较大为负和轴力比为正时.根据不同几何参数下节点极限承载力的变化规律,对于几何尺寸相同的弦杆与腹杆,支杆截面越大,对节点域刚度的贡献作用就越大,节点极限承载力的提高幅度也越大;支腹杆轴力比一定时,支杆的管径越小,对节点的极限承载力越不利.工程设计中空间KX型节点的支腹杆截面尺寸不应相差过大.  相似文献   

16.
建立了钢管混凝土K形节点的精细化有限元模型,基于模型试验数据对有限元模型进行校核,试验值与有限元计算值最大相对偏差为7. 26%,平均相对偏差为3. 72%,说明有限元模型具有较高的精度。采用理论分析和数值模拟方法对钢管混凝土K形节点破坏模式和极限承载力影响因素进行研究,结果表明:钢管混凝土K形节点荷载-位移曲线可分为弹性、弹塑性和破坏三个阶段,破坏模式为受压支管接头局部屈曲破坏和受拉支管接头处主管扯裂破坏;节点极限承载力随着主管径厚比、支管径厚比和支管间隙的减小而变大,随着支管与主管外径比、支管与主管壁厚比、核心混凝土等级的增加而变大,随着支管与主管轴线夹角的增大而先变小再变大,随着主管轴压力水平先变大后变小;节点极限承载力增长系数与节点尺寸缩放系数之间呈正相关,基本呈线性增长,节点极限承载力增长系数变化速度大于尺寸缩放系数,最后提出了钢管混凝土K形节点不同破坏模式的极限承载力建议公式。  相似文献   

17.
K型方、圆管相贯节点的极限承载力非线性有限元分析   总被引:24,自引:1,他引:23  
本文利用非线性分析的有限元方法对K型方主管、圆支管杂交型相贯节点进行了数值计算,揭示了节点极限承载力随几何参数的变化规律及主管作用荷载对节点极限承载力的影响,分析了节点的破坏机理和破坏形式,并针对不同的节点破坏形式给出了相应的节点加强方案,得出了一些有用的结论,供工程设计参考应用。  相似文献   

18.
圆钢管桁架在主管内填筑混凝土,可有效提高其承载力。为了获得圆钢管混凝土桁架K形节点受力性能和承载力计算方法,研究了在受拉或受压支管处K形节点的失效模式和破坏机理;基于圆钢管混凝土K形节点在不同失效模式下的破坏机理和受力状态,分别对支管截面形式为圆形或矩(方)形的圆钢管混凝土K形节点建立合理的简化计算模型,推导出不同失效模式下K形节点极限承载力计算公式,并给出相应的极限承载力建议公式。试验验证了圆钢管混凝土K形节点的试验值与计算值吻合较好,研究表明圆钢管混凝土K形节点的极限承载力计算公式的准确性,可应用于圆钢管混凝土桁架结构计算和设计,也为相关标准建立和完善提供理论依据。  相似文献   

19.
方圆管相贯节点极限承载力研究   总被引:10,自引:0,他引:10  
采用ANSYS结构分析程序的四节点板壳单元对T ,Y型方主管、圆支管相贯节点进行了弹塑性大挠度分析 ,研究了管节点的受力性能和塑性区扩展过程 ,揭示了节点的破坏机理和破坏形式 ,获得了其极限承载力及其随节点几何参数的变化规律 ,提出了节点加强方案  相似文献   

20.
郑莲琼 《钢结构》2011,(11):20-23
采用有限元分析软件ABAQUS对K型圆钢管混凝土节点与空钢管节点进行计算分析,比较两者破坏形态的差别,并对K型圆钢管混凝土节点各种可能的破坏模式进行分析.在此基础上,分析支管外径与主管外径比β、支主管夹角θ、弦杆轴向压力等参数对圆钢管混凝土K型节点极限承载力的影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号