首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
HIV-1蛋白酶为成熟病毒颗粒的正常组装提供必需的结构蛋白和功能蛋白,因此,HIV-1蛋白酶抑制剂可有效阻止病毒的进一步感染。然而,耐药性一直是抗HIV药物面临的一个关键科学问题,设计一类具有新型骨架特征的HIV-1蛋白酶抑制剂不失为一种好的解决方案。以Darunavir为先导化合物,运用骨架跃迁和拼合等药物设计策略,设计合成了3个结构新颖的化合物,均未见文献报道,目标化合物经~1HNMR、~(13)CNMR和MS确证。  相似文献   

2.
Here we highlight a sound and unique work reported by Chen and co-workers entitled “HIV-1 fusion inhibitors targeting the membrane-proximal external region of Env spikes” (Xiao et al., Nat. Chem. Biol. 2020 , 16, 529). In this article, the authors identify, by means of a clever antibody-guided strategy, several small molecules as fusion inhibitors of HIV-1 replication acting at the membrane proximal external region (MPER) of the HIV-1 envelope (Env) spike. MPER, which was previously recognized as a vaccine target, emerges as a novel druggable target for the discovery of HIV-1 fusion inhibitors. The compounds (exemplified by dequalinium and dequalinium-inspired analogues) prevent the conformational changes of Env from the prefusion species to the intermediate states required for membrane fusion. This work not only paves the way to novel, specific and useful anti-HIV-1 inhibitors, but also discloses new therapeutic strategies against other infectious diseases.  相似文献   

3.
4.
FREM1 (Fras-related extracellular matrix 1) and its splice variant TILRR (Toll-like interleukin-1 receptor regulator) have been identified as integral components of innate immune systems. The potential involvement of FREM1 in HIV-1 (human immunodeficiency virus 1) acquisition was suggested by a genome-wide SNP (single nucleotide polymorphism) analysis of HIV-1 resistant and susceptible sex workers enrolled in the Pumwani sex worker cohort (PSWC) in Nairobi, Kenya. The studies showed that the minor allele of a FREM1 SNP rs1552896 is highly enriched in the HIV-1 resistant female sex workers. Subsequent studies showed that FREM1 mRNA is highly expressed in tissues relevant to mucosal HIV-1 infection, including cervical epithelial tissues, and TILRR is a major modulator of many genes in the NF-κB signal transduction pathway. In this article, we review the role of FREM1 and TILRR in modulating inflammatory responses and inflammation, and how their influence on inflammatory responses of cervicovaginal tissue could enhance the risk of vaginal HIV-1 acquisition.  相似文献   

5.
With the increasing prevalence of drug-resistant variants, novel potent HIV-1 protease inhibitors with broad-spectrum antiviral activity against multidrug-resistant causative viruses are urgently needed. Herein, we designed and synthesized a new series of HIV-1 protease inhibitors with phenols or polyphenols as the P2 ligands and a variety of sulfonamide analogs as the P2′ ligands. A number of these new inhibitors showed superb enzymatic inhibitory activity and antiviral activity. In particular, inhibitors 15d and 15f exhibited potent enzymatic inhibitory activity in the low picomolar range, and the latter showed excellent activity against the Darunavir-resistant HIV-1 variant. Furthermore, the molecular modeling studies provided insight into the ligand-binding site interactions between inhibitors and the enzyme cavity, and they sparked inspiration for the further optimization of potent inhibitors.  相似文献   

6.
Rhabdomyosarcoma (RMS) is the most common type of pediatric soft tissue sarcoma. It is classified into two main subtypes: embryonal (eRMS) and alveolar (aRMS). MYC family proteins are frequently highly expressed in RMS tumors, with the highest levels correlated with poor prognosis. A pharmacological approach to inhibit MYC in cancer cells is represented by Bromodomain and Extra-Terminal motif (BET) protein inhibitors. In this paper, we evaluated the effects of BET inhibitor (+)-JQ1 (JQ1) on the viability of aRMS and eRMS cells. Interestingly, we found that the drug sensitivity of RMS cell lines to JQ1 was directly proportional to the expression of MYC. JQ1 induces G1 arrest in cells with the highest steady-state levels of MYC, whereas apoptosis is associated with MYC downregulation. These findings suggest BET inhibition as an effective strategy for the treatment of RMS alone or in combination with other drugs.  相似文献   

7.
The complex hide-and-seek game between HIV-1 and the host immune system has impaired the development of an efficient vaccine. In addition, the high variability of the virus impedes the long-term control of viral replication by small antiviral drugs. For more than 20 years, phage display technology has been intensively used in the field of HIV-1 to explore the epitope landscape recognized by monoclonal and polyclonal HIV-1-specific antibodies, thereby providing precious data about immunodominant and neutralizing epitopes. In parallel, biopanning experiments with various combinatorial or antibody fragment libraries were conducted on viral targets as well as host receptors to identify HIV-1 inhibitors. Besides these applications, phage display technology has been applied to characterize the enzymatic specificity of the HIV-1 protease. Phage particles also represent valuable alternative carriers displaying various HIV-1 antigens to the immune system and eliciting antiviral responses. This review presents and summarizes the different studies conducted with regard to the nature of phage libraries, target display mode and biopanning procedures.  相似文献   

8.
Chemotherapy resistance is one of the reasons for eye loss in patients with retinoblastoma (RB). RB chemotherapy resistance has been studied in different cell culture models, such as WERI-RB1. In addition, chemotherapy-resistant RB subclones, such as the etoposide-resistant WERI-ETOR cell line have been established to improve the understanding of chemotherapy resistance in RB. The objective of this study was to characterize cell line models of an etoposide-sensitive WERI-RB1 and its etoposide-resistant subclone, WERI-ETOR, by proteomic analysis. Subsequently, quantitative proteomics data served for correlation analysis with known drug perturbation profiles. Methodically, WERI-RB1 and WERI-ETOR were cultured, and prepared for quantitative mass spectrometry (MS). This was carried out in a data-independent acquisition (DIA) mode. The raw SWATH (sequential window acquisition of all theoretical mass spectra) files were processed using neural networks in a library-free mode along with machine-learning algorithms. Pathway-enrichment analysis was performed using the REACTOME-pathway resource, and correlated to the molecular signature database (MSigDB) hallmark gene set collections for functional annotation. Furthermore, a drug-connectivity analysis using the L1000 database was carried out to associate the mechanism of action (MOA) for different anticancer reagents to WERI-RB1/WERI-ETOR signatures. A total of 4756 proteins were identified across all samples, showing a distinct clustering between the groups. Of these proteins, 64 were significantly altered (q < 0.05 & log2FC |>2|, 22 higher in WERI-ETOR). Pathway analysis revealed the “retinoid metabolism and transport” pathway as an enriched metabolic pathway in WERI-ETOR cells, while the “sphingolipid de novo biosynthesis” pathway was identified in the WERI-RB1 cell line. In addition, this study revealed similar protein signatures of topoisomerase inhibitors in WERI-ETOR cells as well as ATPase inhibitors, acetylcholine receptor antagonists, and vascular endothelial growth factor receptor (VEGFR) inhibitors in the WERI-RB1 cell line. In this study, WERI-RB1 and WERI-ETOR were analyzed as a cell line model for chemotherapy resistance in RB using data-independent MS. Analysis of the global proteome identified activation of “sphingolipid de novo biosynthesis” in WERI-RB1, and revealed future potential treatment options for etoposide resistance in RB.  相似文献   

9.
Human immunodeficiency virus type 1 (HIV-1) uptakes homo-dimerized viral RNA genome into its own particle. A cis-acting viral RNA segment responsible for this event, termed packaging signal (psi), is located at the 5′-end of the viral genome. Although the psi segment exhibits nucleotide variation in nature, its effects on the psi function largely remain unknown. Here we show that a psi sequence from an HIV-1 regional variant, subtype D, has a lower packaging ability compared with that from another regional variant, HIV-1 subtype B, despite maintaining similar genome dimerization activities. A series of molecular genetic investigations narrowed down the responsible element of the selective attenuation to the two sequential nucleotides at positions 226 and 227 in the psi segment. Molecular dynamics simulations predicted that the dinucleotide substitution alters structural dynamics, fold, and hydrogen-bond networks primarily of the psi-SL2 element that contains the binding interface of viral nucleocapsid protein for the genome packaging. In contrast, such structural changes were minimal within the SL1 element involved in genome dimerization. These results suggest that the psi 226/227 dinucleotide pair functions as a cis-acting regulator to control the psi structure to selectively tune the efficiency of packaging, but not dimerization of highly variable HIV-1 genomes.  相似文献   

10.
11.
The underlying molecular mechanism and their general effect on the replication capacity of HIV 1 drug-resistance-associated mutations is often poorly understood. To elucidate the effect of two such mutations located in a region with a high density of spicing regulatory elements on the HIV-1-splicing outcome, bioinformatic predictions were combined with transfection and infection experiments. Results show that the previously described R263K drug-resistance-associated integrase mutation has additionally a severe effect on the ESE2b splicing regulatory element (SRE) in exon 2b, which causes loss of SD2b recognition. This was confirmed by an R263R silent mutation with a similar predicted effect on the exon 2b SRE. In contrast, a V260I mutation and its silent counterpart with a lower effect on ESS2b did not exhibit any differences in the splicing pattern. Since HIV-1 highly relies on a balanced splicing reaction, changes in the splicing outcome can contribute to changes in viral replication and might add to the effect of escape mutations toward antiviral drugs. Thus, a classification of mutations purely addressing proteins is insufficient.  相似文献   

12.
In our previous work, we replaced the TRM (tryptophan-rich motif) of T20 (Enfuvirtide) with fatty acid (C16) to obtain the novel lipopeptide LP-40, and LP-40 displayed enhanced antiviral activity. In this study, we investigated whether the C16 modification could enhance the high-resistance barrier of the inhibitor LP-40. To address this question, we performed an in vitro simultaneous screening of HIV-1NL4-3 resistance to T20 and LP-40. The mechanism of drug resistance for HIV-1 Env was further studied using the expression and processing of the Env glycoprotein, the effect of the Env mutation on the entry and fusion ability of the virus, and an analysis of changes to the gp41 core structure. The results indicate that the LP-40 activity is enhanced and that it has a high resistance barrier. In a detailed analysis of the resistance sites, we found that mutations in L33S conferred a stronger resistance, except for the well-recognized mutations in amino acids 36–45 of gp41 NHR, which reduced the inhibitory activity of the CHR-derived peptides. The compensatory mutation of eight amino acids in the CHR region (NDQEEDYN) plays an important role in drug resistance. LP-40 and T20 have similar resistance mutation sites, and we speculate that the same resistance profile may arise if LP-40 is used in a clinical setting.  相似文献   

13.
The Bridging Sheet domain of HIV-1 gp120 is highly conserved among the HIV-1 strains and allows HIV-1 binding to host cells via the HIV-1 coreceptors. Further, the bridging sheet domain is a major target to neutralize HIV-1 infection. We rationally designed four linear peptide epitopes that mimic the three-dimensional structure of bridging sheet by using molecular modeling. Chemically synthesized peptides BS3 and BS4 showed a fair degree of antigenicity when tested in ELISA with IgG purified from HIV(+) broadly neutralizing sera while the production of synthetic peptides BS1 and BS2 failed due to their high degree of hydrophobicity. To overcome this limitation, we linked all four BS peptides to the COOH-terminus of GST protein to test both their antigenicity and immunogenicity. Only the BS1 peptide showed good antigenicity; however, no envelope specific antibodies were elicited upon mice immunization. Therefore we performed further analyses by linking BS1 peptide to the NH2-terminus of the E2 scaffold from the Geobacillus Stearothermophylus PDH complex. The E2-BS1 fusion peptide showed good antigenic results, however only one immunized rabbit elicited good antibody titers towards both the monomeric and oligomeric viral envelope glycoprotein (Env). In addition, moderate neutralizing antibodies response was elicited against two HIV-1 clade B and one clade C primary isolates. These preliminary data validate the peptide mimotope approach as a promising tool to obtain an effective HIV-1 vaccine.  相似文献   

14.
目的获得高质量的中国流行株HIV-1B/C重组亚型包膜蛋白抗原。方法改造表达载体,以构建中国流行株HIV-1B/C重组亚型包膜蛋白基因带有筛选标记的真核细胞表达质粒,将所构建质粒转染真核细胞,用含有抗性的培养基筛选出能够高效、持续表达包膜蛋白的稳定表达细胞株。结果所构建的表达载体pVRPEnv转染细胞后可表达目的蛋白,并建立了稳定表达细胞系。结论获得了可以高效、持续稳定表达中国流行株HIV-1B/C重组亚型包膜蛋白的细胞株。  相似文献   

15.
16.
17.
Programmed cell death 1 (PD-1) and its ligands PD-L1 and PD-L2 are receptors that act in co-stimulatory and coinhibitory immune responses. Signaling the PD-1/PD-L1 or PD-L2 pathway is essential to regulate the inflammatory responses to infections, autoimmunity, and allergies, and it has been extensively studied in cancer. Allergic diseases include asthma, rhinoconjunctivitis, atopic dermatitis, drug allergy, and anaphylaxis. These overactive immune responses involve IgE-dependent activation and increased CD4+ T helper type 2 (Th2) lymphocytes. Recent studies have shown that PD-L1 and PD-L2 act to regulate T-cell activation and function. However, the main role of PD-1 and its ligands is to balance the immune response; however, the inflammatory process of allergic diseases is poorly understood. These immune checkpoint molecules can function as a brake or a kick-start to regulate the adaptive immune response. These findings suggest that PD-1 and its ligands may be a key factor in studying the exaggerated response in hypersensitivity reactions in allergies. This review summarizes the current understanding of the role of PD-1 and PD-L1 and PD-L2 pathway regulation in allergic diseases and how this immunomodulatory pathway is currently being targeted to develop novel therapeutic immunotherapy.  相似文献   

18.
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is one of the best studied enzymes. It is crucial for photosynthesis, and thus for all of biosphere’s productivity. There are four isoforms of this enzyme, differing by amino acid sequence composition and quaternary structure. However, there is still a group of organisms, dinoflagellates, single-cell eukaryotes, that are confirmed to possess Rubisco, but no successful purification of the enzyme of such origin, and hence a generation of a crystal structure was reported to date. Here, we are using in silico tools to generate the possible structure of Rubisco from a dinoflagellate representative, Symbiodinium sp. We selected two templates: Rubisco from Rhodospirillum rubrum and Rhodopseudomonas palustris. Both enzymes are the so-called form II Rubiscos, but the first is exclusively a homodimer, while the second one forms homo-hexamers. Obtained models show no differences in amino acids crucial for Rubisco activity. The variation was found at two closely located inserts in the C-terminal domain, of which one extends a helix and the other forms a loop. These inserts most probably do not play a direct role in the enzyme’s activity, but may be responsible for interaction with an unknown protein partner, possibly a regulator or a chaperone. Analysis of the possible oligomerization interface indicated that Symbiodinium sp. Rubisco most likely forms a trimer of homodimers, not just a homodimer. This hypothesis was empowered by calculation of binding energies. Additionally, we found that the protein of study is significantly richer in cysteine residues, which may be the cause for its activity loss shortly after cell lysis. Furthermore, we evaluated the influence of the loop insert, identified exclusively in the Symbiodinium sp. protein, on the functionality of the recombinantly expressed R. rubrum Rubisco. All these findings shed new light onto dinoflagellate Rubisco and may help in future obtainment of a native, active enzyme.  相似文献   

19.
The transforming growth factor beta (TGF-β) signaling is fundamental for correct embryonic development. However, alterations of this pathway have been correlated with oncogenesis, tumor progression and sustaining of cancer stem cells (CSCs). Cripto-1 (CR-1) and Nodal are two embryonic proteins involved in TGF-β signaling. Their expression is almost undetectable in terminally differentiated cells, but they are often re-expressed in tumor cells, especially in CSCs. Moreover, cancer cells that show high levels of CR-1 and/or Nodal display more aggressive phenotypes in vitro, while in vivo their expression correlates with a worse prognosis in several human cancers. The ability to target CSCs still represents an unmet medical need for the complete eradication of certain types of tumors. Given the prognostic role and the selective expression of CR-1 and Nodal on cancer cells, they represent archetypes for targeted therapy. The aim of this review is to clarify the role of CR-1 and Nodal in cancer stem populations and to summarize the current therapeutic strategy to target CSCs using monoclonal antibodies (mAbs) or other molecular tools to interfere with these two proteins.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号