首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
(Co)variance components for milk, fat, and protein yield of 8075 first-parity Danish Holsteins (DH) were estimated in random regression models by REML. For all analyses, the fixed part of the model was held constant, whereas four different functions were applied to model the additive genetic effect and the permanent environment effect. Homogeneous residual variance was assumed throughout lactation. Univariate models were compared using a minimum of -2 ln(restricted likelihood) as the criterion for best fit. Heritabilities as a function of time were calculated from the estimated curve parameters from univariate analyses. Independent of the function applied and the trait in question, heritabilities were lowest in the beginning of the lactation. Heritabilities for persistency of fat yield were slightly higher than heritabilities for persistency of milk and protein yield. Genetic correlations between persistency and 305-d production were higher for protein and milk yield than for fat yield. Bivariate analyses between the production traits were carried out in sire models using the models with the best 3-parameter curve fit in the univariate analyses. Correlations between traits were calculated from covariance components for curve parameters estimated in bivariate analyses. Genetic correlations between milk and protein yield were higher than between milk and fat yield.  相似文献   

2.
This study inferred genetic and permanent environmental variation of milk yield in Tropical Milking Criollo cattle and compared 5 random regression test-day models using Wilmink's function and Legendre polynomials. Data consisted of 15,377 test-day records from 467 Tropical Milking Criollo cows that calved between 1974 and 2006 in the tropical lowlands of the Gulf Coast of Mexico and in southern Nicaragua. Estimated heritabilities of test-day milk yields ranged from 0.18 to 0.45, and repeatabilities ranged from 0.35 to 0.68 for the period spanning from 6 to 400 d in milk. Genetic correlation between days in milk 10 and 400 was around 0.50 but greater than 0.90 for most pairs of test days. The model that used first-order Legendre polynomials for additive genetic effects and second-order Legendre polynomials for permanent environmental effects gave the smallest residual variance and was also favored by the Akaike information criterion and likelihood ratio tests.  相似文献   

3.
Genetic (co)variances between body condition score (BCS), body weight (BW), milk yield, and fertility were estimated using a random regression animal model extended to multivariate analysis. The data analyzed included 81,313 BCS observations, 91,937 BW observations, and 100,458 milk test-day yields from 8725 multiparous Holstein-Friesian cows. A cubic random regression was sufficient to model the changing genetic variances for BCS, BW, and milk across different days in milk. The genetic correlations between BCS and fertility changed little over the lactation; genetic correlations between BCS and interval to first service and between BCS and pregnancy rate to first service varied from -0.47 to -0.31, and from 0.15 to 0.38, respectively. This suggests that maximum genetic gain in fertility from indirect selection on BCS should be based on measurements taken in midlactation when the genetic variance for BCS is largest. Selection for increased BW resulted in shorter intervals to first service, but more services and poorer pregnancy rates; genetic correlations between BW and pregnancy rate to first service varied from -0.52 to -0.45. Genetic selection for higher lactation milk yield alone through selection on increased milk yield in early lactation is likely to have a more deleterious effect on genetic merit for fertility than selection on higher milk yield in late lactation.  相似文献   

4.
Electrical conductivity (EC) of milk has been introduced as an indicator trait for mastitis during the last few decades. The correlation of EC to mastitis, easy access to EC data, and the low cost of recording are properties that make EC a good indicator trait for mastitis. In this study, EC was measured daily during the lactation and available from 2101 first-lactation Holstein cows in 8 herds in the United States. Data were analyzed with an animal model that included herd-test-day, age at calving and days in milk (DIM) as fixed effects, and random additive genetic and permanent environmental effects. A repeatability model and 5 random regression (RR) models with increasing order of Legendre polynomials were used. The goodness of fit for the different models was evaluated based on several tests. Our results indicate that the best model was a RR model with a fourth-order Legendre polynomial for both additive genetic and permanent environmental effects. Heritability estimates obtained with this model were from 0.26 to 0.36. Due to the relatively high heritability obtained for EC of milk, EC might be a potential indicator trait to use in a breeding program designed to reduce the incidence of mastitis.  相似文献   

5.
Legendre polynomials of orders 3 to 8 in random regression models (RRM) for first-lactation milk production in Canadian Holsteins were compared statistically to determine the best model. Twenty-six RRM were compared using LP of order 5 for the phenotypic age-season groupings. Variance components of RRM were estimated using Bayesian estimation via Gibbs sampling. Several statistical criteria for model comparison were used including the total residual variance, the log likelihood function, Akaike's information criterion, the Bayesian information criterion, Bayes factors, an information-theoretic measure of model complexity, and the percentage relative reduction in complexity. The residual variance always picks the model with the most parameters. The log likelihood and information-theoretic measure picked the model with order 5 for additive genetic effects and order 7 for permanent environmental effects. The currently used model in Canada (order 5 for both additive and permanent environmental effects) was not the best for any single criterion, but was optimal when considering all criteria.  相似文献   

6.
Data used in the present study included 1,095,980 first-lactation test-day records for protein yield of 154,880 Holstein cows housed on 196 large-scale dairy farms in Germany. Data were recorded between 2002 and 2009 and merged with meteorological data from public weather stations. The maximum distance between each farm and its corresponding weather station was 50 km. Hourly temperature-humidity indexes (THI) were calculated using the mean of hourly measurements of dry bulb temperature and relative humidity. On the phenotypic scale, an increase in THI was generally associated with a decrease in daily protein yield. For genetic analyses, a random regression model was applied using time-dependent (d in milk, DIM) and THI-dependent covariates. Additive genetic and permanent environmental effects were fitted with this random regression model and Legendre polynomials of order 3 for DIM and THI. In addition, the fixed curve was modeled with Legendre polynomials of order 3. Heterogeneous residuals were fitted by dividing DIM into 5 classes, and by dividing THI into 4 classes, resulting in 20 different classes. Additive genetic variances for daily protein yield decreased with increasing degrees of heat stress and were lowest at the beginning of lactation and at extreme THI. Due to higher additive genetic variances, slightly higher permanent environment variances, and similar residual variances, heritabilities were highest for low THI in combination with DIM at the end of lactation. Genetic correlations among individual values for THI were generally >0.90. These trends from the complex random regression model were verified by applying relatively simple bivariate animal models for protein yield measured in 2 THI environments; that is, defining a THI value of 60 as a threshold. These high correlations indicate the absence of any substantial genotype × environment interaction for protein yield. However, heritabilities and additive genetic variances from the random regression model tended to be slightly higher in the THI range corresponding to cows’ comfort zone. Selecting such superior environments for progeny testing can contribute to an accurate genetic differentiation among selection candidates.  相似文献   

7.
Multiple-trait random regression animal models with simultaneous and recursive links between phenotypes for milk yield and somatic cell score (SCS) on the same test day were fitted to Canadian Holstein data. All models included fixed herd test-day effects and fixed regressions within region-age at calving-season of calving classes, and animal additive genetic and permanent environmental regressions with random coefficients. Regressions were Legendre polynomials of order 4 on a scale from 5 to 305 d in milk (DIM). Bayesian methods via Gibbs sampling were used for the estimation of model parameters. Heterogeneity of structural coefficients was modeled across (the first 3 lactations) and within (4 DIM intervals) lactation. Model comparisons in terms of Bayes factors indicated the superiority of simultaneous models over the standard multiple-trait model and recursive parameterizations. A moderate heterogeneous (both across- and within-lactation) negative effect of SCS on milk yield (from −0.36 for 116 to 265 DIM in lactation 1 to −0.81 for 5 to 45 DIM in lactation 3) and a smaller positive reciprocal effect of SCS on milk yield (from 0.007 for 5 to 45 DIM in lactation 2 to 0.023 for 46 to 115 DIM in lactation 3) were estimated in the most plausible specification. No noticeable differences among models were detected for genetic and environmental variances and genetic parameters for the first 2 regression coefficients. The curves of genetic and permanent environmental variances, heritabilities, and genetic and phenotypic correlations between milk yield and SCS on a daily basis were different for different models. Rankings of bulls and cows for 305-d milk yield, average daily SCS, and milk lactation persistency remained the same among models. No apparent benefits are expected from fitting causal phenotypic relationships between milk yield and SCS on the same test day in the random regression test-day model for genetic evaluation purposes.  相似文献   

8.
Genetic parameters for milk, fat, and protein yield and persistency in the first 3 lactations of Polish Black and White cattle were estimated. A multiple-lactation model was applied with random herd-test-day effect, fixed regressions for herd-year and age-season of calving, and random regressions for the additive genetic and permanent environmental effects. Three data sets with slightly different edits on minimal number of days in milk and the size of herd-year class were used. Each subset included more than 0.5 million test-day records and more than 58,000 cows. Estimates of covariance components and genetic parameters for each trait were obtained by Bayesian methods using the Gibbs sampler. Due to the large size and a good structure of the data, no differences in estimates were found when additional criteria for record selection were applied. More than 95% of the genetic variance for all traits and lactations was explained by the first 2 principal components, which were associated with the mean yield and lactation persistency. Heritabilities of 305-d milk yield in the first 3 lactations (0.18, 0.16, 0.17) were lower than those for fat (0.12, 0.11, 0.12) and protein (0.13, 0.14, 0.15). Estimates of daily heritabilities increased in general with days in milk for all traits and lactations, with no apparent abnormalities at the beginning or end of lactation. Genetic correlations between yields in different lactations ranged from 0.74 (fat yield in lactations 1 and 3) to 0.89 (milk yield in lactations 2 and 3). Persistency of lactation was defined as the linear regression coefficient of the lactation curve. Heritability of persistency increased with lactation number for all traits and genetic correlations between persistency in different lactations were smaller than those for 305d yield. Persistency was not genetically correlated with the total yield in lactation.  相似文献   

9.
《Journal of dairy science》2023,106(7):4813-4824
The shape of the lactation curve is linked to an animal's health, feed requirements, and milk production throughout the year. Random regression models (RRM) are widely used for genetic evaluation of total milk production throughout the lactation and for milk yield persistency. Genomic information used with the single-step genomic BLUP method (ssGBLUP) substantially improves the accuracy of genomic prediction of breeding values in the main dairy cattle breeds. The aim of this study was to implement an RRM using ssGBLUP for milk yield in Saanen dairy goats in France. The data set consisted of 7,904,246 test-day records from 1,308,307 lactations of Saanen goats collected in France between 2000 and 2017. The performance of this type of evaluation was assessed by applying a validation step with data targeting candidate bucks. The model was compared with a nongenomic evaluation and a traditional evaluation that use cumulated performance throughout the lactation model (LM). The incorporation of genomic information increased correlations between daughter yield deviations (DYD) and estimated breeding values (EBV) obtained with a partial data set for candidate bucks. The LM and the RRM had similar correlation between DYD and EBV. However, the RRM reduced overestimation of EBV and improved the slope of the regression of DYD on EBV obtained at birth. This study shows that a genomic evaluation from a ssGBLUP RRM is possible in dairy goats in France and that RRM performance is comparable to a LM but with the additional benefit of a genomic evaluation of persistency. Variance of adjacent SNPs was studied with LM and RRM following the ssGBLUP. Both approaches converged on approximately the same regions explaining more than 1% of total variance. Regions associated with persistency were also found.  相似文献   

10.
The aim of this project was to investigate the relationship of milk urea nitrogen (MUN) with 3 milk production traits [milk yield (MY), fat yield (FY), protein yield (PY)] and 6 fertility measures (number of inseminations, calving interval, interval from calving to first insemination, interval from calving to last insemination, interval from first to last insemination, and pregnancy at first insemination). Data consisted of 635,289 test-day records of MY, FY, PY, and MUN on 76,959 first-lactation Swedish Holstein cows calving from 2001 to 2003, and corresponding lactation records for the fertility traits. Yields and MUN were analyzed with a random regression model followed by a multi-trait model in which the lactation was broken into 10 monthly periods. Heritability for MUN was stable across lactation (between 0.16 and 0.18), whereas MY, FY, and PY had low heritability at the beginning of lactation, which increased with time and stabilized after 100 d in milk, at 0.47, 0.36, and 0.44, respectively. Fertility traits had low heritabilities (0.02 to 0.05). Phenotypic correlations of MUN and milk production traits were between 0.13 (beginning of lactation) and 0.00 (end of lactation). Genetic correlations of MUN and MY, FY, and PY followed similar trends and were positive (0.22) at the beginning and negative (−0.15) at the end of lactation. Phenotypic correlations of MUN and fertility were close to zero. A surprising result was that genetic correlations of MUN and fertility traits suggest a positive relationship between the 2 traits for most of the lactation, indicating that animals with breeding values for increased MUN also had breeding values for improved fertility. This result was obtained with a random regression model as well as with a multi-trait model. The analyzed group of cows had a moderate level of MUN concentration. In such a population MUN concentration may increase slightly due to selection for improved fertility. Conversely, selection for increased MUN concentration may improve fertility slightly.  相似文献   

11.
The objective of the research was to estimate genetic parameters, such as heritabilities and genetic correlations, using daily test day data for milk yield (MY), milking speed (MS), dry matter intake (DMI), and body weight (BW) using random regression methodology. Data were from first lactation dairy cows (n = 320) from the Chamau research farm of the Swiss Federal Institute of Technology, Switzerland over the period from April 1994 to 2004. All traits were recorded daily using automated machines. Estimated heritabilities (h2) varied from 0.18 to 0.30 (mean h2 = 0.24) for MY, 0.003 to 0.098 (mean h2 = 0.03) for MS, 0.22 to 0.53 (mean h2 = 0.43) for BW, and 0.12 to 0.34 (mean h2 = 0.23) for DMI. A permanent environmental effect was included in both the univariate and bivariate models, but was assumed constant in estimating some genetic correlations because of convergence problems. Estimated genetic correlations varied from 0.31 to 0.41 between MY and MS, from −0.47 to 0.29 between MY and DMI, from −0.60 to 0.54 between MY and BW, from 0.17 to 0.26 between MS and DMI, from −0.18 to 0.25 between MS and BW, and from −0.89 to 0.29 between DMI and BW. Genetic correlations for MY, MS, DMI, and BW from calving to midlactation decreased similarly to 0.40, 0.36, 0.14, and 0.36 and, at the end of the lactation, decreased to −0.06, 0.23, −0.07, and 0.09, respectively. Daily genetic variance-covariance of many functional traits are reported for the first time and will be useful when constructing selection indexes for more than one trait based on longitudinal genetic parameters.  相似文献   

12.
The eigenvectors of the additive genetic random regression covariance (K) matrix contribute differentially to different parts of the lactation curve in response to genetic selection. It is, therefore, important to examine the genetic response patterns from the individual eigenvectors of the matrix K for the modification of the shape of the lactation curve. This study demonstrated a general methodology for imposing differential restrictions on different eigenvectors according to their effects on the shape of the lactation curve. A numerical example is given to illustrate the derivation and implementation of this procedure. Theoretically and experimentally, manipulating individual eigenvectors based on their individual effects on the shape of the lactation curve is more important than manipulating the joint effect of all the eigenvectors of K on the lactation curve. This described procedure provides a useful tool for simultaneous improvement of milk production and lactation persistency by modifying the shape of the lactation curve.  相似文献   

13.
The study of relationships between mathematical properties of functions used to model lactation curves is usually limited to the evaluation of the goodness of fit. Problems related to the existence of different lactation curve shapes are usually neglected or solved drastically by considering shapes markedly different from the standard as biologically atypical. A deeper investigation could yield useful indications for developing technical tools aimed at modifying the lactation curve in a desirable fashion. Relationships between mathematical properties and lactation curve shapes were analyzed by fitting several common functions (Wood incomplete gamma, Wilmink's exponential, Ali and Schaeffer's polynomial regression, and fifth-order Legendre polynomials) to 229,518 test-day records belonging to 27,837 lactations of Italian Simmental cows. Among the best fits (adjusted r(2) higher than 0.75), the 3-parameter models (Wood and Wilmink) were able to detect 2 main groups of curve shape: standard and atypical. Five-parameter models (Ali and Schaeffer function and the Legendre polynomials) were able to recognize a larger number of curve shapes. The higher flexibility of 5-parameter models was accompanied by increased sensitivity to local random variation as evidenced by the bias in estimated test-day yields at the beginning and end of lactation (border effect). Meaning of parameters, range of their values and of their (co) variances are clearly different among groups of curves. Our results suggest that analysis based on comparisons between parameter values and (co)variances should be done carefully. Comparisons among parameter values and (co)variances could yield more robust, reliable, and easy to interpret results if performed within groups based on curve shape.  相似文献   

14.
The test-day yields of milk, fat and protein were analysed from 1433 first lactations of buffaloes of the Murrah breed, daughters of 113 sires from 12 herds in the state of S?o Paulo, Brazil, born between 1985 and 2007. For the test-day yields, 10 monthly classes of lactation days were considered. The contemporary groups were defined as the herd-year-month of the test day. Random additive genetic, permanent environmental and residual effects were included in the model. The fixed effects considered were the contemporary group, number of milkings (1 or 2 milkings), linear and quadratic effects of the covariable cow age at calving and the mean lactation curve of the population (modelled by third-order Legendre orthogonal polynomials). The random additive genetic and permanent environmental effects were estimated by means of regression on third- to sixth-order Legendre orthogonal polynomials. The residual variances were modelled with a homogenous structure and various heterogeneous classes. According to the likelihood-ratio test, the best model for milk and fat production was that with four residual variance classes, while a third-order Legendre polynomial was best for the additive genetic effect for milk and fat yield, a fourth-order polynomial was best for the permanent environmental effect for milk production and a fifth-order polynomial was best for fat production. For protein yield, the best model was that with three residual variance classes and third- and fourth-order Legendre polynomials were best for the additive genetic and permanent environmental effects, respectively. The heritability estimates for the characteristics analysed were moderate, varying from 0·16±0·05 to 0·29±0·05 for milk yield, 0·20±0·05 to 0·30±0·08 for fat yield and 0·18±0·06 to 0·27±0·08 for protein yield. The estimates of the genetic correlations between the tests varied from 0·18±0·120 to 0·99±0·002; from 0·44±0·080 to 0·99±0·004; and from 0·41±0·080 to 0·99±0·004, for milk, fat and protein production, respectively, indicating that whatever the selection criterion used, indirect genetic gains can be expected throughout the lactation curve.  相似文献   

15.
The objective of this study was to estimate the impact of somatic cell count (SCC) in early lactation (SCCel) [measured between 5 to 14 d in milk (DIM)] of dairy heifers on test-day milk yield (MY) during the first lactation.In total, 117,496 four-weekly test-day records of 14,243 heifers were used. A multilevel regression analysis, which included test-day SCC among the explanatory variables, revealed that an increase by one unit of the natural log-transformed SCCel (LnSCCel) was on average associated with a decrease in MY of 0.13 kg/d later in lactation. As an example, a heifer with an SCCel of 50,000 cells/mL measured at 10 DIM was estimated to produce 119 and 155 kg more milk during its first lactation than heifers with a SCCel of 500,000 and 1,000,000 cells/mL, respectively. When not accounting for test-day SCC, the effect of LnSCCel on MY was larger, indicating that part of the negative impact of elevated SCCel was associated with elevated test-day SCC later in lactation.Furthermore, an elevated SCCel at 14 DIM had a larger impact than an equally elevated SCCel measured at an earlier DIM. In addition, the negative effect of an elevated SCCel remained present during almost the entire first lactation in a subgroup of heifers with a second test-day SCC 相似文献   

16.
The dataset used in this analysis contained a total of 341,736 test-day observations of somatic cell scores from 77,110 primiparous daughters of 1965 Norwegian Cattle sires. Initial analyses, using simple random regression models without genetic effects, indicated that use of homogeneous residual variance was appropriate. Further analyses were carried out by use of a repeatability model and 12 random regression sire models. Legendre polynomials of varying order were used to model both permanent environmental and sire effects, as did the Wilmink function, the Lidauer-M?ntysaari function, and the Ali-Schaeffer function. For all these models, heritability estimates were lowest at the beginning (0.05 to 0.07) and higher at the end (0.09 to 0.12) of lactation. Genetic correlations between somatic cell scores early and late in lactation were moderate to high (0.38 to 0.71), whereas genetic correlations for adjacent DIM were near unity. Models were compared based on likelihood ratio tests, Bayesian information criterion, Akaike information criterion, residual variance, and predictive ability. Based on prediction of randomly excluded observations, models with 4 coefficients for permanent environmental effect were preferred over simpler models. More highly parameterized models did not substantially increase predictive ability. Evaluation of the different model selection criteria indicated that a reduced order of fit for sire effects was desireable. Models with zeroth- or first-order of fit for sire effects and higher order of fit for permanent environmental effects probably underestimated sire variance. The chosen model had Legendre polynomials with 3 coefficients for sire, and 4 coefficients for permanent environmental effects. For this model, trajectories of sire variance and heritability were similar assuming either homogeneous or heterogeneous residual variance structure.  相似文献   

17.
Test-day milk yields of first-lactation Black and White cows were used to select the model for routine genetic evaluation of dairy cattle in Poland. The population of Polish Black and White cows is characterized by small herd size, low level of production, and relatively early peak of lactation. Several random regression models for first-lactation milk yield were initially compared using the “percentage of squared bias” criterion and the correlations between true and predicted breeding values. Models with random herd-test-date effects, fixed age-season and herd-year curves, and random additive genetic and permanent environmental curves (Legendre polynomials of different orders were used for all regressions) were chosen for further studies. Additional comparisons included analyses of the residuals and shapes of variance curves in days in milk. The low production level and early peak of lactation of the breed required the use of Legendre polynomials of order 5 to describe age-season lactation curves. For the other curves, Legendre polynomials of order 3 satisfactorily described daily milk yield variation. Fitting third-order polynomials for the permanent environmental effect made it possible to adequately account for heterogeneous residual variance at different stages of lactation.  相似文献   

18.
Test-day genetic evaluation models have many advantages compared with those based on 305-d lactations; however, the possible use of test-day model (TDM) results for herd management purposes has not been emphasized. The aim of this paper was to study the ability of a TDM to predict production for the next test day and for the entire lactation. Predictions of future production and detection of outliers are important factors for herd management (e.g., detection of health and management problems and compliance with quota). Because it is not possible to predict the herd-test-day (HTD) effect per se, the fixed HTD effect was split into 3 new effects: a fixed herd-test month-period effect, a fixed herd-year effect, and a random HTD effect. These new effects allow the prediction of future production for improvement of herd management. Predicted test-day yields were compared with observed yields, and the mean prediction error computed across herds was found to be close to zero. Predictions of performance records at the herd level were even more precise. Discarding herds enrolled in milk recording for <1 yr and animals with very few tests in the evaluation file improved correlations between predicted and observed yields at the next test day (correlation of 0.864 for milk in first-lactation cows as compared with a correlation of 0.821 with no records eliminated). Correlations with the observed 305-d production ranged from 0.575 to 1 for predictions based on 0 to 10 test-day records, respectively. Similar results were found for second and third lactation records for milk and milk components. These findings demonstrate the predictive ability of a TDM.  相似文献   

19.
《Journal of dairy science》2023,106(4):2510-2518
Extending the voluntary waiting period (VWP) for primiparous cows can have a positive impact on fertility without a negative impact on milk production per day in the calving interval (CInt). We investigated the effect of extended VWP during first lactation on milk yield (MY) during 2 consecutive lactations in primiparous cows. The study involved 16 commercial herds in southern Sweden. A total of 533 Holstein and Red dairy cattle (Swedish Red, Danish Red, Ayrshire) dairy cows were randomly assigned to a conventional 25 to 95 d VWP (n = 252) or extended 145 to 215 d VWP (n = 281). Data on calvings, inseminations, and test-day yields were retrieved from the Swedish Milk Recording System. Cows with VWP according to plan and completing 1 or 2 CInt with a second or third calving were included in the data analysis. Whole lactation and 305-d energy-corrected milk (ECM) yield were higher for the extended VWP group than the conventional VWP group in both the first lactation (12,307 vs. 9,587 and 9,653 vs. 9,127 kg ECM) and second lactation (12,817 vs. 11,986 and 11,957 vs. 11,304 kg ECM). We found no difference between the VWP groups in MY per day during the first CInt or during the first and second CInt combined, although MY per day during the second CInt was around 1.5 kg higher for cows with extended VWP than for cows with conventional VWP. Thus extended VWP for primiparous cows can be used as a management tool without compromising MY.  相似文献   

20.
The objectives of this study were to estimate variance components for test-day milk, fat, and protein yields and average daily SCS in 3 subsets of Italian Holsteins using a multiple-trait, multiple-lactation random regression test-day animal model and to determine whether a genetic heterogeneous variance adjustment was necessary. Data were test-day yields of milk, fat, and protein and SCS (on a log2 scale) from the first 3 lactations of Italian Holsteins collected from 1992 to 2002. The 3 subsets of data included 1) a random sample of Holsteins from all herds in Italy, 2) a random sample of Holsteins from herds using a minimum of 75% foreign sires, and 3) a random sample of Holsteins from herds using a maximum of 25% foreign sires. Estimations of variances and covariances for this model were achieved by Bayesian methods using the Gibbs sampler. Estimated 305-d genetic, permanent environmental, and residual variance was higher in herds using a minimum of 75% foreign sires compared with herds using a maximum of 25% foreign sires. Estimated average daily heritability of milk, fat, and protein yields did not differ among subsets. Heritability of SCS in the first lactation differed slightly among subsets and was estimated to be the highest in herds with a maximum of 25% foreign sire use (0.19 ± 0.01). Genetic correlations across lactations for milk, fat, and protein yields were similar among subsets. Genetic correlations across lactations for SCS were 0.03 to 0.08 higher in herds using a minimum of 75% or a maximum of 25% foreign sires, compared with herds randomly sampled from the entire population. Results indicate that adjustment for heterogeneous variance at the genetic level based on the percentage of foreign sire use should not be necessary with a multiple-trait random regression test-day animal model in Italy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号