首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The static mechanical responses of two- and three-dimensionally reinforced carbon/carbon composites (2D- and 3D-C/Cs) were compared. The mechanical properties examined included tensile and shear stress-strain (S-S) relations, and fracture behavior using compact tension and double edge notch configurations. Compared with 2D-C/Cs, 3D-C/Cs were shown to possess a similar tensile S-S relation, lower shear strength, higher ultimate deformation in shear, and much higher fracture resistance. The differences in shear and fracture resistance were shown to be derived from a weaker fiber/matrix interface and weaker bonding between fiber bundles in the 3D-C/Cs. These weak interface characteristics of 3D-C/Cs are due to the high value of residual stresses caused by the three-dimensional fiber constraint of 3D-C/Cs.  相似文献   

2.
Soo-Jin Park  Min-Kang Seo  Douk-Rae Lee 《Carbon》2003,41(15):2991-3002
In this work, the relationships between work of adhesion and fracture toughness parameters, such as work of fracture (Wf), the critical stress intensity factor (KIC), and the specific fracture energy (GIC), of carbon–carbon composites (C/C composites) were investigated. The impact properties of the composites were also studied in the context of differentiating between the initiation and propagation energies for failure behavior. Composites consisting of different contents of the oxidation inhibitor MoSi2 displayed an increase of the work of adhesion between the fibers and the matrix, which improved both the fracture toughness and impact properties of the composites. The 12 wt% MoSi2 composites exhibited the highest mechanical and mechanical interfacial properties. This was probably due to the improvement of the London dispersive component, WAL, of the work of adhesion, resulting in an increase in the interfacial adhesion force among the fibers, filler, and matrix in this system.  相似文献   

3.
The fundamental internal friction behavior of carbon–carbon composites is studied. Two internal friction mechanisms are proposed according to the special internal friction characteristics in carbon–carbon composites. A thermoelastic mechanism, which is independent of amplitude, mainly leads to the internal friction increase with increasing frequency. The other is a static hysteresis mechanism that internal friction depends on the amplitude but is independent of frequency. Moreover, it is very interesting that some abnormal internal friction phenomena can be observed. The variation characteristics of internal friction and dynamic modulus versus temperature in carbon–carbon composites are quite different from other materials. This special behavior may be a result of interfacial CTE effects, as well as the coordination effects of the individual response of the fibers, matrix and interface of carbon–carbon composites. Finally, the validity of internal friction analysis methods for densification process monitoring and non-destructive inspection of carbon–carbon composites is discussed for the first time. The results indicate that internal friction testing methods have great potential for monitoring process and inspecting components of carbon–carbon composites non-destructively.  相似文献   

4.
Compressive behavior of three-dimensionally reinforced carbon/carbon composite (3D-C/C) was examined from room temperature to elevated temperatures up to about 3000 K. Three-dimensionally reinforced C/C was found to have an inclination to induce kinks at the ends of specimens due to extremely low shear strength. In order to avoid this type of premature fracture and to conduct high-temperature tests, discussion was made on specimen geometry and testing procedure, and the combination of a dumbbell-shape specimen and test configuration without a supporting jig were found to be suitable for the present study. Using this set-up, the compressive strength of a 3D-C/C was evaluated as a function of temperature up to about 3000 K. The compressive strength of the 3D-C/C monotonically increased with the increase in temperature up to 2300 K, but decreased above this temperature. The strength enhancement was suggested to be caused by improvement in the fiber/matrix interfacial bonding, and the degradation over 2300 K was by softening of the matrix at high temperatures.  相似文献   

5.
The interfacial failure is examined for a unidirectionally reinforced carbon fiber/carbon matrix composite. A novel tensile test is conducted which realizes the processes of interfacial debonding and subsequent pull-out of a fiber bundle from the surrounding composite medium. The critical stress at the onset of delamination cracking is related to the fracture energy (the critical energy release rate for mode II cracking). A force-balance equation of a fiber bundle, which is quasi-statically pulled-out of the composite socket, is formulated in terms of the inter- and intra-laminar shear strengths of the composite. This equation is successfully used to estimate the delamination crack length along the debonded fiber bundle, as a function of the stress applied to the bundle.  相似文献   

6.
Sharp indentation tests on carbon fiber and carbon matrix composites (C/C composite) were carried out over a wide load range from 0 to 2 N on three different cross sections: normal, parallel and inclined to the fiber axis. For comparison purposes, a variety of carbons including HOPG, glassy C, and pyrocarbon films was also examined. Both the fibers and the matrices displayed first a purely elastic response and second crack-induced damage. A purely elastic behavior was also observed with most of the varieties of carbon considered. Young’s modulus was extracted from the indentation curves either at maximum or at various forces, using the Sneddon equation of elastic response on loading (elastic indentation) or a classical equation based on elastic recovery on unloading (elastoplastic indentation). Results are discussed with respect to features of structure and heterogeneity of material in the stressed volume.  相似文献   

7.
The flexure strength and the fracture toughness at 300 K and 77 K were measured in two isotropic polycrystalline graphites with very different microstructure and in one carbon/carbon composite. In addition, the micromechanisms of damage initiation at the notch tip were examined in situ during the fracture tests through a long focal distance microscope. It was found that the mechanical response of carbon-based materials was insensitive to the effect of cryogenic temperatures. In graphite with coarse microstructure, cracks appeared at very low stresses in various points of an ample region surrounding the notch tip, and damage progressed by their stable crack growth and link up. On the contrary, damage was localized at the notch root in graphite with a fine microstructure. High stresses were necessary to nucleate a single crack, which grew unstably, leading to immediate specimen failure. Damage in carbon/carbon composites was nucleated in the form of matrix cracks around the notch tip, but fiber yarns impeded the crack propagation until the load had increased significantly. This process was repeated several times, leading to a serrated load-deflection curve and to a marked increase in the overall fracture resistance.  相似文献   

8.
Ruiying Luo 《Carbon》2002,40(11):1957-1963
Carbon/carbon composites are manufactured using the electrified preform producing directly heat CVI process. The preforms are prepared by laminating the carbon fiber felts with crossply reinforcement, and infiltrated with carbon using natural gas or propylene as a reactant, with nitrogen as diluent at atmospheric pressure. The relations between the resistivity of samples and infiltration time are determined under the operating conditions. The results indicate that the preforms have gained a high infiltration rate by this technology, and the samples have higher densities using natural gas rather than propylene. Their highest average bulk densities are up to 1.71 g/cm3 after the preforms of 1100×500×35 mm size have been densified for 80 h using natural gas. The carbon fibres in the preforms have not been damaged by this technology as yet, and the composites prepared have sufficiently high flexural properties. As the brake angular velocity is increased with the constant brake moment inertia and specific pressure, the average coefficient of friction for the composites prepared using natural gas is linearly and greatly decreased, but the variations of the brake moment inertia have a slight influence on the average coefficient of the friction when the brake angular velocity and specific pressure are kept constant. Their average thickness wear is 13×10−4 mm/surface per stop.  相似文献   

9.
The effects of needle-punched felt structure, including mass ratio of non-woven cloth to short-cut fiber web, PAN-based carbon fiber types of non-woven cloth and thickness of unit (one layer of non-woven cloth and short-cut web was named as a unit), on the flexural properties of C/C composites from pressure gradient CVI are discussed. Results show that flexural strength and modulus increase when mass ratio of non-woven cloth to short-cut fiber web changes from 7:3 to 6:4 and that PAN-based carbon fiber types of non-woven cloth strongly influence the flexural properties. The strength of C/C composites is not linear with the strength of non-woven cloth carbon fiber because of the important interface between carbon fiber and matrix carbon. It is suitable to choose T300 or T700 as reinforcing carbon fiber for C/C composites in the present study. An optimum unit number per cm of the needle-punched felts for higher flexural properties exists.  相似文献   

10.
Blending of coal tar pitch with a polyimide precursor based on acetyl derivatives of aromatic diamines during its synthesis leads to a homogeneous, highly thermostable matrix for carbon fibre reinforced composites. If the weight content of the pitch in the polyimide matrix does not exceed 40%, the mechanical properties (flexural strength, shear modulus and fracture toughness) of these composites are comparable to those of similar composites based on a pure polyimide matrix. Carbonisation and graphitisation of the composites with a properly blended matrix precursor leads to carbon fibre reinforced carbon composites with lower open porosity and higher density, elastic modulus and flexural strength than those of composites based on a pure polyimide matrix.  相似文献   

11.
Ruiying Luo  Xiulan Huai  Haiying Ding 《Carbon》2003,41(14):2693-2701
The effect of high temperature heat treatment on the tribological behavior of carbon/carbon (C/C) composites has been investigated. C/C composite preforms were made from 1K PAN plain carbon cloth, and densified using rapid directional diffusion (RDD) CVI processes. Four specimens treated at 1800, 1800+2000, 2000, and 2300 °C, respectively, were prepared. A ring-on-ring specimen configuration was used to simulate aircraft brakes. The brake initial angular velocity ranged from 1800 to 7500 rpm (6.2-26.0 m s−1 average linear sliding velocity). The specific pressure and moment of inertia were 392-784 kPa and 0.25-0.31 kg m2, respectively (1.9-42.3 MJ m−2 kinetic energy loading per unit friction surface area). The results showed that the stability of the brake moment-time curves increased with increasing heat treatment temperature (HTT) for the four composites, and those treated at 2300 °C possessed the lowest initial brake moment peak ratio values (from 1.1 to 1.3). The high degree of graphitization and low shear forces of the matrix carbon resulting from the high HTT could allow friction films to develop and reduce those values under the present brake conditions. The friction coefficients of four RDD CVI C/C composites decreased with an increase in specific pressure. The resulting changes in the friction coefficient of the four composites due to the specific pressure changes have basically nothing to do with the interface temperature under those conditions. According to the practical brake conditions, the friction properties of RDD CVD C/C composites could be improved by regulating the structure of the brake discs, changing the specific pressure exerted on the discs and the heat treatment. The linear wear rates of the four materials increased with increasing HTT. The composites treated at 2000 °C had both high enough friction coefficients and the lower linear wear rates. The different heat treatment methods at 2000 °C had no obvious effect on the friction and wear properties of RDD CVI C/C composites.  相似文献   

12.
Jungin Kim  Woo Il Lee  Khalid Lafdi 《Carbon》2003,41(13):2625-2634
A method for the numerical simulation of the carbonization process is introduced. A general model for the transient analyses of heat and mass transfer together with stress and displacement predictions is constructed using two-dimensional FEM (finite element method) for arbitrary geometry. The established model is applied to the carbonization of a single-phase, homogeneous, isotropic phenolic foam, and an anisotropic, two-phase composite material. A damage model is introduced to account for the development of shrinkage cracks, and a CDM (continuum damage mechanics) model is implemented for the calculation of mechanical property degradation due to crack evolution. The established model is verified by comparison with experimental results, and is applied to various numerical examples.  相似文献   

13.
In order to apply carbon/carbon composites (C/Cs) to various hot structures, secondary bonding techniques effective at elevated temperatures are frequently required. In the present study, carbon bonding between lamination type C/Cs was formed by the carbonation of polymer adhesive, and the strength of the bonding was evaluated at temperatures up to 2273 K in a vacuum using the double-notched shear method. The results revealed that bonding strength increased with increasing temperature and became higher than the inter-laminar shear strength of the substrate C/C when the bonding layer was thin. The enhancement of carbon bonding strength with increasing temperature was shown to be caused mainly by the evaporation of absorbed gases, probably water, up to temperatures of 1800 K with a slight additional contribution of thermal residual stress. It was also shown that heat treatment at higher temperatures made the bonding stronger.  相似文献   

14.
15.
S.P AppleyardB Rand 《Carbon》2002,40(6):817-834
This paper reports the systematic characterisation of changes in the structure and properties of a series of unidirectional carbon-carbon composites at key stages of processing. The composites were fabricated from PAN-based carbon fibres (surface treated and untreated) and two carbon matrix systems (graphitising and non-graphitising). The effects of matrix shrinkage, together with thermal expansion mismatch and interfacial bonding, established the composite structure and hence the composite properties. The morphology and interconnectivity of the shrinkage cracks, the strength and nature of the fibre-matrix interfacial interaction and the development of matrix texture were identified as key structural features. These features were characterised and their effect on subsequent processing stages (densification) and composite properties was determined.  相似文献   

16.
A. Mirhabibi  S. Baghshahi 《Carbon》2003,41(8):1593-1603
In this paper we report a study of the effect of graphite flakes of different size and volume fraction on the mechanical properties of a fine-grained carbon produced by the ‘sinterable’ route. Mesophase microbeads have been used as a matrix and the volume percent and size of the graphite flakes have been varied. It is shown that the flakes significantly increase the work of fracture of the composite, the effect being dependent on both flake size and volume fraction. However, there is a corresponding decrease in the Young Modulus and flexural strength of the composites. The flakes are not bonded to the structure and effectively act as inherent ‘crack-like’ pores. Flakes aligned perpendicular to the surface form the flaws that control the fracture stress. However, they also contribute significantly to the bridging stresses in the wake of the crack, so enhancing the work of fracture. The results should be useful in understanding the role of graphite-flake inclusions in modifying the properties of carbon materials.  相似文献   

17.
Carbon/carbon (C/C) composites with addition of hafnium carbide (HfC) were prepared by immersing the carbon felt in a hafnium oxychloride aqueous solution, followed by densification and graphitization. Mechanical properties, coefficients of thermal expansion (CTE), and thermal conductivity of the composites were investigated. Results show that mechanical properties of the composites decrease dramatically when the HfC content is greater than 6.5 wt%. CTE of the composites increases with the increase of HfC contents. The composites with addition of 6.5 wt% HfC show the highest thermal conductivity. The high thermal conductivity results from the thermal motion of CO in the gaps and pores, which can improve phonon–defect interaction of the C/C composites. Thermal conductivities of the composites decrease when the HfC content is greater than 6.5 wt%, which is due to formation of a large number of cracks in the composites. Cracks increase the phonon scattering and hence restrain heat transport, which results in the decrease of thermal conductivity of the composites.  相似文献   

18.
The tensile behavior of four different brands of carbon fibers (a rayon-based, a PAN-based, and 2 pitch-based fibers) has been investigated at various temperatures up to 2400 °C. The tests were carried out using an original fiber testing apparatus. Various mechanical properties including strength and Young's modulus, as well as Weibull statistical parameters were extracted from test data. Typical tensile behaviors were evidenced such as an essentially linear elastic behavior at room temperature and intermediate temperatures up to 1400-1800 °C, then a nonlinear elastic delayed response at higher temperatures and ultimately an inelastic response with permanent deformations at very high temperatures. Such unusual nonlinear responses for homogeneous materials were related to structure and texture features at the nanometer scale, that were described through an X-ray diffraction technique.  相似文献   

19.
《Ceramics International》2020,46(10):16142-16150
Hafnium carbide nanowires (HfCnws) were in-situ grown in carbon/carbon (C/C) composites, and subsquently the preforms were densified by isothermal chemical vapor infiltration to obtain HfCnws modified carbon/carbon (HfCnws-C/C) composites. Morphology and microstructure of HfCnws were examined, and the effect of HfCnws on the mechanical property and ablation resistance of C/C composites were also investigated. Results show that introducing HfCnws refined the grain size of pyrolytic carbon (PyC). The out-of-plane compression, interlaminar shear and flexual strength of HfCnws-C/C composites increased by 120.80%, 45.60% and 94.65%, respectively compared with pure C/C, and the HfCnws-C/C shows good ablation resistance under oxy-acetylene flame ablation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号