共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
基于凝固数值模拟和板坯应变计算分析了直上钢Q235B连铸中间裂纹的形成机理和影响因素,并根据实际生产条件提出了铸坯高拉速质量控制策略。研究发现,辊缝和对中精度为Q235B铸坯中间裂纹形成的主要因素,两者应变之和占凝固前沿总应变60%以上;而表面回温高于50 ℃/m的铸机前段冷却也有重要影响,其应变占比最高约40%。当辊缝的邻辊正偏差为1.5 mm时,通过强化冷却和控制回温可使铸坯凝固前沿总拉应变整体降低约20%;当辊缝的邻辊正偏差为0.5 mm时,冷却优化对凝固前沿拉应变的影响较小。随着拉速增大,辊缝精度对铸坯中间裂纹的影响愈加显著。当前工况下,将锰硫比提高到25,坯壳可最多承受1.4 m/min时邻辊正偏差 1.5 mm、对中偏差±0.5 mm和回温不超过50 ℃/m带来的附加应变。为抑制1.5 m/min以上高拉速下直上钢Q235B铸坯的中间裂纹,建议将辊缝整体精度控制在±0.5 m且邻辊正偏差控制在0.5 mm以内。 相似文献
4.
5.
6.
对有中心开裂缺陷的Q235B板坯进行了跟踪轧制和对轧材的检测,结果表明开裂缺陷轧制时能够焊合,力学性能能够满足标准要求,对轧材组织有一定影响。 相似文献
7.
针对LD-氩站流程生产Q235B钢230 mm连铸板坯出现的中间裂纹,利用光学显微镜、扫描电镜和能谱仪对中间裂纹宏观和微观特征进行了系统分析。结果表明,判断扇形段接弧不良、辊缝精度差、辊子错位等是中间裂纹形成的外因;裂纹带上有粗大的晶粒,且有明显的Mn、S等元素以及复合夹杂物形态聚集是铸坯产生中间裂纹的内因。通过控制接弧精度≤±0.3mm、辊缝精度≤±0.5 mm、二冷比水量0.50 L/kg、成品[S]≤0.030%、[Mn]/[S]≥15等工艺措施,减少甚至杜绝板坯中间裂纹的发生,提高了连铸板坯的心部质量。 相似文献
8.
9.
针对板坯投产以来易出现表面纵向裂纹的情况,结合现场实际生产特点,从钢水质量、工艺控制和操作等方面进行分析与改进,铸坯表面纵向裂纹发生率得到了有效控制,板坯表面纵裂发生率由2009年的6.2%降到2010年的3.5%。 相似文献
10.
采用TMCP工艺在3000 mm中厚板轧机上对Q235B坯料进行升级试验,成功轧制出Q345B级别钢板。通过控制轧制温度、变形量分配和轧后快速冷却,实现厚度25 mm以下升级板的屈服强度达到370 MPa以上,伸长率大于25%,塑性、韧性和焊接性能良好,具有重要的推广应用价值。 相似文献
11.
CSP板坯(Q235B)高温力学性能试验研究 总被引:3,自引:1,他引:3
采用Gleeble1500对CSP连铸坯(Q235B)进行了热模拟研究;分析了试验温度为800、900、1100℃的横、纵向试样的组织和断口形貌及晶界的元素偏析和夹杂物.结果表明:CSP生产的Q235B连铸坯在600~1 320℃间存在2个脆性温度区,即1 320~1 200℃的第Ⅰ脆性温度区域和600~1 000℃的第Ⅲ脆性温度区域;在1 000~1 200℃温度范围内,Q235B钢具有良好的塑性.而在800℃时试样的Z值为8.46%.Q235B钢的第Ⅲ类脆性区的脆化原因:一方面是形变诱导铁素体呈网状析出,产生应力集中;另一方面是奥氏体低温区域发生的氮化物(AlN)析出产生的晶界脆化.AlN在奥氏体晶界的析出,在拉伸力的作用下易形成应力集中源,使空洞形成、长大并聚集,是铸坯裂纹源. 相似文献
12.
通过生产试验,对Q235中板表面纵向裂纹进行检测和分析。确认了板坯原始裂纹是造成中板边部纵向裂纹的根源。经过对板坯连铸工艺调整和技术攻关,使裂纹缺陷得到有效控制,板坯裂纹缺陷比例由5.3%降到1.4%。 相似文献
13.
14.
15.
16.
通过对铸坯的低倍检验和三角区裂纹部位的电镜扫描,分析了连铸板坯三角区裂纹的类型和成因;提出了从钢水成分、二冷配水、驱动压力、轻压下、支撑段等方面的改进措施。其结果表明,钢中硫和铸坯的支撑段是影响三角区裂纹的主要因素。具体措施的实施,使三角区裂纹的发生率和级别大幅度下降。 相似文献
17.
18.
运用金相显微镜、扫描电镜等手段,对存在质量缺陷的Q235B钢板进行了显微组织分析。结果表明,孔洞缺陷的原因是铸机浇铸过程中氩气流量过高;裂纹周边有轻微脱碳现象及在裂纹内部发现存在Si、Ca、M g的氧化物,由于同时存在脱碳和氧化质点,可推断该类裂纹来源于连铸坯表面纵向裂纹及铸坯气孔,在轧制过程中进一步扩展。同时对连铸生产提出了优化措施。 相似文献
19.
通过对本钢炼钢厂Q235B、SPA.H、SAE1008等钢种中心裂纹和三角区裂纹产生成因的研究,结合设备特点,进行工艺改进,制定出合理的工艺制度,从而降低裂纹产生几率,提高铸坯质量。 相似文献
20.