首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The glass‐transition temperatures and melting behaviors of poly(ethylene terephthalate)/poly(ethylene 2,6‐naphthalate) (PET/PEN) blends were studied. Two blend systems were used for this work, with PET and PEN of different grades. It was found that Tg increases almost linearly with blend composition. Both the Gibbs–DiMarzio equation and the Fox equation fit experimental data very well, indicating copolymer‐like behavior of the blend systems. Multiple melting peaks were observed for all blend samples as well as for PET and PEN. The equilibrium melting point was obtained using the Hoffman–Weeks method. The melting points of PET and PEN were depressed as a result of the formation of miscible blends and copolymers. The Flory–Huggins theory was used to study the melting‐point depression for the blend system, and the Nishi–Wang equation was used to calculate the interaction parameter (χ12). The calculated χ12 is a small negative number, indicating the formation of thermodynamically stable, miscible blends. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 11–22, 2001  相似文献   

2.
The crystallization kinetics of poly(ethylene terephthalate)/poly(ethylene 2,6‐naphthalate) (PET/PEN) blends were investigated by DSC as functions of crystallization temperature, blend composition, and PET and PEN source. Isothermal crystallization kinetics were evaluated in terms of the Avrami equation. The Avrami exponent (n) is different for PET, PEN, and the blends, indicating different crystallization mechanisms occurring in blends than those in pure PET and PEN. Activation energies of crystallization were calculated from the rate constants, using an Arrhenius‐type expression. Regime theory was used to elucidate the crystallization course of PET/PEN blends as well as that of unblended PET and PEN. The transition from regime II to regime III was clearly observed for each blend sample as the crystallization temperature was decreased. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 23–37, 2001  相似文献   

3.
The transport of oxygen and carbon dioxide through a set of random copolymer films based on poly(ethylene terephthalate) (PET) and poly(ethylene 2,6‐naphthalate) (PEN) were explored. Diffusivity and permeability of both gases decreased with increasing PEN content. The oxygen and carbon dioxide diffusion coefficients decreased 74 and 82% from pure PET to pure PEN, respectively. The presence of stiffer PEN moieties had an effect on the glass transition temperature (Tg) of PET/PEN blends and gas barrier. In the complete range of tested blends, the differential scanner calorimeter analysis displayed a single value of thermal glass transition temperature. As the PEN content was increased, the fractional free volume (FFV) and the diffusion coefficients of the blends were decreased. The Doolittle equation provided the best fit for diffusivity and FFV and showed that the gas transport behavior was better understood when it was taken into consideration the cohesive energy of blends. As the PEN content in films was increased, their rigidity and the glass/rubber transition temperature were increased, and their capacity to be penetrated by small molecules like O2 and CO2 was decreased. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers  相似文献   

4.
《国际聚合物材料杂志》2012,61(3-4):345-358
Abstract

The crystallization of several blends of poly(ethylene terephthalate) (PET) and poly(ethylene 2,6 naphthalene dicarboxylate) (PEN) has been investigated by wide angle- (WAXS) and small angle X-ray scattering (SAXS) using synchrotron radiation. The role of transesterification reactions, giving rise to a fully amorphous non-crystal-lizable material (copolyester) is brought up. For the blends rich in PET, crystallization temperatures (Tc ) of 105 and 117°C were used. For blends rich in PEN, crystaffization was performed at Tc =150 and 165°C, respectively. The time variation of the degree of crystallinity was fitted into an Avrami equation considering the induction time prior to the beginning of crystallization. The Avrami parameters, the half times of crystallization, as well as the nanostructure development (SAXS invariant and long period) for the blends, are discussed in relation to blend composition and are compared to the parameters observed for the homopolymers PET and PEN.  相似文献   

5.
Molecular orientation of two aromatic additives in cellulose acetate propionate (CAP) matrix was investigated from orientation birefringence data and an intermolecular orientation correlation represented by nematic interaction (NI) was evaluated. Poly(ethylene terephthalate) (PET) and poly(ethylene naphthalate) (PEN) oligomers with low molecular weight (ca. 400 g mol?1) were used as the additives. The NI strengths of CAP‐PET and CAP‐PEN were determined to be 0.28 ± 0.05 and 0.96 ± 0.15, respectively. In particular, compared with other polymer/polymer and polymer/small additive blends, the NI value in CAP/PEN blend is much stronger and represents the perfect orientation correlation. The strong orientation correlation is possibly due to the rigid naphtalate structure in PEN. Contrary, a relation between birefringence and orientation function for CAP in bulk and blend showed the same trend, suggesting that the orientation behavior of CAP determines the orientation birefringence. As two ester groups in CAP are responsible for birefringence, the alignment of the ester groups is affected by only the main chain orientation. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40570.  相似文献   

6.
The phase structure of poly(ethylene terephthalate)/poly(ethylene 2,6‐naphthalate) (PET/PEN) blends was studied in relation to the molecular weight. The samples were prepared by both solution blends, which showed two glass‐transition temperatures (Tg), and melt blends (MQ), which showed a single Tg, depending on the composition of the blends. The Tg of the MQ series was independent of the molecular weight of the homopolymer, although the degree of transesterification in the blends was affected by the molecular weight. The MQ series showed two exotherms during the heating process of a differential scanning calorimetry scan. The peak temperature and the heat flow of the exotherms were affected by the molecular weight of the homopolymers. The strain‐induced crystallization of the MQ series suggested the independent crystallization of PET and PEN. Based on the results, a microdomain structure of each homopolymer was suggested. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 2428–2438, 2005  相似文献   

7.
The surface crystallization behavior of poly(ethylene terephthalate) (PET) and poly(ethylene 2,6‐naphthalate) (PEN) spin‐coated thin films was compared by means of atomic force microscopy (AFM) with an in situ heating stage. As the films were heated up stepwise, characteristic surface crystals appeared at a crystallization temperature (Tc) in the near‐surface region which is about 15 °C under the bulk Tc, and were replaced by bulk crystals when the temperature was increased to the bulk Tc. In the case of films whose thickness is less than 70 nm (PET) and 60 nm (PEN), significant increases in the bulk Tc were observed. Scanning force microscopy (SFM) force‐distance curve measurements showed that the glass transition temperature (Tg) of the near‐surface region of PET and PEN were 22.0 and 26.6 °C below their bulk Tg (obtained by DSC). After the onset of surface crystallization, edge‐on and flat‐on crystals appeared at the free surface of PET and PEN thin films, whose morphologies are very different to those of the bulk crystals. Although the same general behavior was observed for both polyesters, there are significant differences both the influence of the surface and substrate on the transition temperatures, and in morphology of the surface crystals. These phenomena are discussed in terms of the differences in the mobility of polymer chains near the surface. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44269.  相似文献   

8.
The extent of transesterification in poly(ethylene terephthalate) (PET)/poly(ethylene‐2,6‐naphthalate) (PEN) blends with the addition of PET–PEN copolymers was examined by DSC and 1H‐NMR measurements to evaluate the factor affecting the reaction level at a given temperature and time. Both block (P(ET‐block‐EN)) and random (P(ET‐ran‐EN)) copolymers were used as the copolymers. At a given treatment temperature and time, the level was increased by the addition of P(ET‐block‐EN) into PET/PEN blends. On the other hand, a reverse change was observed when P(ET‐ran‐EN) was mixed with PET/PEN blends. During the treatment, an inhomogeneous phase of the blends changed into the homogeneous one; however, the change showed little effect on the reaction level. The effects of molecular weight on the reaction level were also examined. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

9.
An attempt was made to explore the effects of the interchange reactions on the viscoelastic behavior of binary blends based on poly(ethylene terephthalate) (PET)/poly(ethylene naphthalate) (PEN) and their nanocomposites. It was seen that with an increase in the number of extrusion runs and mixing temperature, the extent of reaction (X) and degree of randomness (RD) both increased, whereas the average sequence block lengths values were decreased. On the contrary, the blend composition did not play a significant role on X and RD values. Addition of nanoclay inhibited the transreactions in PET/PEN blends. The absence of crystallization peaks implied that the crystalline structure was destroyed as a result of blending and an amorphous system was created possibly due to the transreactions simultaneously with the formation of random copolymers inhibiting the crystallization process. The rheological investigations showed that the addition of PEN into the PEN/PET blends enhanced the storage modulus, loss modulus, and complex viscosity. The viscosity upswing observed at low‐frequency region in the case of nanocomposite systems evidently confirmed the occurrence of transreactions. Nonetheless, a significant increment in the viscoelastic properties was perceived in the presence of nanoclay corroborating the proper nanoclay distribution throughout the PET/PEN blend system. POLYM. ENG. SCI., 53:2556–2567, 2013. © 2013 Society of Plastics Engineers  相似文献   

10.
Blends of poly(ethylene terephthalate) (PET) and poly (ether esteramide) (PEEA), which is known as an ion conductive polymer, were prepared by melt mixing using a twin screw extruder. Antistatic performance of the molded plaques and the effects of adding ionomers such as lithium neutralized poly(ethylene‐co‐methacrylic acid) copolymer(E/MAA‐Li), magnesium neutralized poly(ethylene‐co‐methacrylic acid) copolymer(E/MAA‐Mg), and zinc neutralized poly(ethylene‐co‐methacrylic acid) copolymer (E/MAA‐Zn) were investigated. Antistatic effect of adding poly(ethylene‐co‐methacrylic acid) copolymer(E/MAA) and polystyrene, and poly(ethylene naphthalate) (PEN) into PET/PEEA blends were also investigated. Here we confirmed that lithium ionomer worked the most effectively in those blend systems. We also confirmed that E/MAA worked to enhance the antistatic performance of PET/PEEA blends. Morphological study of these ternary blends system was conducted by TEM. Specific interaction between PEEA and E/MAA‐Li, and E/MAA were observed. Those ionomers and copolymer domains were encapsulated by PEEA, which could increase the surface area of PEEA in PET matrix. This encapsulation effect explains the unexpected synergy for the static dissipation performance on addition of ionomers and E/MAA to PET/PEEA blends. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers  相似文献   

11.
Blends composed of poly(ethylene terephthalate) (PET) as the majority component and poly(ethylene naphthalate)(PEN) as the minority component were melt-mixed in a single screw extruder at various PET/PEN compound ratios. Tensile and flexural test results reveal a good PET/PEN composition dependence, indicating that the compatibility of the blends is effective in a macrodomain. In thermal tests, single transitions for Tg, Tm and Tc (crystallization temperature), respectively, are observed from DSC as well as single Tg from DMA except for 50/50 blends. These results suggests that the compatibility is sufficient down to the submicron level. Moreover, isothermal DSC tests along with Avrami analysis indicate that PET's crystallization is significantly retarded when blended with PEN. Results in this study demonstrate that PEN is a highly promising additive to improve PET's spinnability at high speeds.  相似文献   

12.
Blends of poly(ethylene terephthalate) (PET) and poly(ethylene naphthalate) (PEN) were processed into biaxially drawn films, and samples taken from the bi‐oriented films were then investigated by dynamic rheology experiments in the melt state. Storage modulus G′ and loss modulus G″ were determined in the frequency range of 10?2–102 rad/s at temperatures between 260 and 300°C. Although the time–temperature superposition (TTS) principle was found to hold in the high frequency regime, a breakdown of TTS was observed at low frequencies, and the terminal behavior of the storage modulus G′ of the blends departs drastically from the terminal behavior observed for the blend components. This is caused by interfacial surface tension effects. The results indicate that despite the effect of transesterification reactions, the PET/PEN blend systems investigated consist of a microseparate phase of PEN platelets in a matrix of PET. This morphology is produced when the blends are processed into biaxially oriented PET/PEN films, and droplets of PEN are deformed into a lamellar structure consisting of parallel and extended, separate layers. The large interfacial surface area of the bi‐oriented PET/PEN blends leads to remarkably strong interfacial tension effects in dynamic rheology measurements. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

13.
In an attempt to minimize the acetaldehyde formation at the processing temperatures (280–300°C) and the outer–inner transesterification reactions in the poly (ethylene terephthalate) (PET)–poly(ethylene naphthalate) (PEN) melt‐mixed blends, the hydroxyl chain ends of PET were capped using benzoyl chloride. The thermal characterization of the melt‐mixed PET–PEN blends at 300°C, as well as that of the corresponding homopolymers, was performed. Degradations were carried out under dynamic heating and isothermal conditions in both flowing nitrogen and static air atmosphere. The initial decomposition temperatures (Ti) were determined to draw useful information about the overall thermal stability of the studied compounds. Also, the glass transition temperature (Tg) was determined by finding data, indicating that the end‐capped copolymers showed a higher degradation stability compared to the unmodified PET and, when blended with PEN, seemed to be efficient in slowing the kinetic of transesterification leading to, for a finite time, the formation of block copolymers, as determined by 1H‐NMR analysis. This is strong and direct evidence that the end‐capping of the ? OH chain ends influences the mechanism and the kinetic of transesterification. POLYM. ENG. SCI., 2012. © 2012 Society of Plastics Engineers  相似文献   

14.
To improve the barrier properties of poly(ethylene terephthalate) (PET), PET/poly(ethylene 2,6‐naphthalate) (PEN) blends with different concentrations of PEN were prepared and were then processed into biaxially oriented PET/PEN films. The air permeability of bioriented films of pure PET, pure PEN, and PET/PEN blends were tested by the differential pressure method. The morphology of the blends was studied by scanning electron microscopy (SEM) observation of the impact fracture surfaces of extruded PET/PEN samples, and the morphology of the films was also investigated by SEM. The results of the study indicated that PEN could effectively improve the barrier properties of PET, and the barrier properties of the PET/PEN blends improved with increasing PEN concentration. When the PEN concentration was equal to or less than 30%, as in this study, the PET/PEN blends were phase‐separated; that is, PET formed the continuous phase, whereas PEN formed a dispersed phase of particles, and the interface was firmly integrated because of transesterification. After the PET/PEN blends were bioriented, the PET matrix contained a PEN microstructure consisting of parallel and extended, separate layers. This multilayer microstructure was characterized by microcontinuity, which resulted in improved barrier properties because air permeation was delayed as the air had to detour around the PEN layer structure. At a constant PEN concentration, the more extended the PEN layers were, the better the barrier properties were of the PET/PEN blends. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 1309–1316, 2006  相似文献   

15.
The kinetics of thermal degradation of thermotropic liquid crystalline poly(p‐oxybenzoate‐co‐ethylene‐2,6‐naphthalate) (PHB/PEN) with the monomer ratio of 60 : 40 and PEN in nitrogen was studied by dynamic thermogravimetry (TG). The kinetic parameters, including the activation energy Ea, the reaction order n, and the frequency factor ln(Z) of the degradation reaction for PHB/PEN (60 : 40) and PEN were analyzed by the single heating rate methods of Friedman and Chang. The effects of the heating rate and the calculating method on the thermostable and degradation kinetic parameters are systematically discussed. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91:3915–3920, 2004  相似文献   

16.
Structure and properties of commercially available fully oriented thermoplastic and thermotropic polyester fibers have been investigated using optical birefringence, infrared spectroscopy, wide‐angle X‐ray diffraction and tensile testing methods. The effect of the replacement of p‐phenylene ring in poly(ethylene terephthalate) (PET) with stiffer and bulkier naphthalene ring in Poly(ethylene 2,6‐naphthalate) (PEN) structure to result in an enhanced birefringence and tensile modulus values is shown. There exists a similar case with the replacement of linear flexible ethylene units in PET and PEN fibers with fully aromatic rigid rings in thermotropic polyesters. Infrared spectroscopy is used in the determination of crystallinity values through the estimation of trans conformer contents in the crystalline phase. The analysis of results obtained from infrared spectroscopy data of highly oriented PET and PEN fibers suggests that trans conformers in the crystalline phase are more highly oriented than gauche conformers in the amorphous phase. Analysis of X‐ray diffraction traces and infrared spectra shows the presence of polymorphic structure consisting of α‐ and β‐phase structures in the fully oriented PEN fiber. The results suggest that the trans conformers in the β‐phase is more highly oriented than the α‐phase. X‐ray analysis of Vectran® MK fiber suggests a lateral organization arising from high temperature modification of poly(p‐oxybenzoate) structure, whereas the structure of Vectran® HS fiber contains regions adopting lateral chain packing similar to the room temperature modification of poly(p‐oxybenzoate). Both fibers are shown by X‐ray diffraction and infrared analyses to consist of predominantly oriented noncrystalline (63–64%) structure together with smaller proportion of oriented crystalline (22–24%) and unoriented noncrystalline (12–15%) structures. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 142–160, 2006  相似文献   

17.
The transesterification reaction of poly(ethylene terephthalate)/poly(ethylene 2,6‐naphthalate) blends during melt‐mixing was studied as a function of blending temperature, blending time, blend composition, processing equipment, and different grades of poly(ethylene terephthalate) and poly(ethylene 2,6‐naphthalate). Results show that the major factors controlling the reaction are the temperature and time of blending. Efficiency of mixing also plays an important role in transesterification. The reaction kinetics can be modeled using a second‐order direct ester–ester interchange reaction. The rate constant (k) was found to have a minimum value at an intermediate PEN content and the activation energy of the rate constant was calculated to be 140 kJ/mol. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 2422–2436, 2001  相似文献   

18.
The cure of diglycidyl ether of bisphenol A (DGEBA) and a homologous series of poly(ethylene oxide) diglycidyl ether (PEODE) epoxy resins with 4,4′‐diaminodiphenyl sulfone (DDS) was studied by scanning and isothermal differential scanning calorimetry (DSC). The heat of polymerization was relatively independent of monomer structure and chain length when determined by isothermal DSC. Variations in the heats of polymerization determined by the scanning method were attributed to degradative reactions at higher temperatures during the scan. The activation energies determined by scanning DSC experiments were relatively constant at 61 ± 3 kJ/mol. However, using an isothermal cure method, the activation energies were found to vary with monomer structure and extent of cure. The isothermal kinetics were analyzed in terms of the autocatalytic model on the basis of competing reaction paths involving catalysis by either initial impurities or hydroxyl groups produced in situ. The activation energies of both reaction paths were found to vary with monomer structure and degree of conversion. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 1479–1488, 1999  相似文献   

19.
The mass transfer profile (permeability, diffusion, and solubility coefficients) of chlorine dioxide (ClO2), a strong oxidizing agent that is used in food and pharmaceutical packaging, was determined through various common polymeric packaging materials. A continuous system for measuring permeation of ClO2, using an electrochemical detector, was developed. It was observed that biaxially‐oriented poly(propylene), poly(ethylene terephthalate), poly(lactic acid), nylon, and a multilayer structure of ethylene vinyl acetate and ethylene vinyl alcohol were better barriers for gaseous ClO2, as compared to polyethylene, poly(vinyl chloride), and polystyrene. The activation energies of permeation for ClO2 through poly(ethylene terephthalate) and poly(lactic acid) were determined to be 51.05 ± 4.35 and 129.03 ± 2.82 kJ/mol, respectively. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, , 2009  相似文献   

20.
The production and properties of blends of poly(ethylene terephthalate) (PET) and poly(ethylene naphthalene 2,6‐dicarboxylate) (PEN) with three modified clays are reported. Octadecylammonium chloride and maleic anhydride (MAH) are used to modify the surface of the montmorillonite–Na+ clay particles (clay–Na+) to produce clay–C18 and clay–MAH, respectively, before they are mixed with the PET/PEN system. The transesterification degree, hydrophobicity and the effect of the clays on the mechanical, rheological and thermal properties are analysed. The PET–PEN/clay–C18 system does not show any improvements in the mechanical properties, which is attributed to poor exfoliation. On the other hand, in the PET–PEN/clay–MAH blends, the modified clay restricts crystallization of the matrix, as evidenced in the low value of the crystallization enthalpy. The process‐induced PET–PEN transesterification reaction is affected by the clay particles. Clay–C18 induces the largest proportion of naphthalate–ethylene–terephthalate (NET) blocks, as opposed to clay–Na+ which renders the lowest proportion. The clay readily incorporates in the bulk polymer, but receding contact‐angle measurements reveal a small influence of the particles on the surface properties of the sample. The clay–Na+ blend shows a predominant solid‐like behaviour, as evidenced by the magnitude of the storage modulus in the low‐frequency range, which reflects a high entanglement density and a substantial degree of polymer–particle interactions. Copyright © 2005 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号