首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The tribological properties of the nano-eutectic Fe1.87C0.13 alloy are investigated under liquid paraffine lubrication against AISI52100 steel ball at room temperature with varied applied load and sliding speed. As comparison, the annealed coarse-grained Fe1.87C0.13 alloy is also examined in the same testing condition. The wear rate of the two alloys increases with increasing applied load and sliding speed. The wear resistance of the nano-eutectic Fe1.87C0.13 alloy is about 2–20 times higher than that of the annealed Fe1.87C0.13 alloy at present experimental conditions. The friction coefficients of the two alloys are almost same. The annealed Fe1.87C0.13 alloy shows serious wear under high applied load and sliding speed. The worn surfaces of the two alloys are analyzed by a scanning electron microscope. With increase in the applied load and sliding speed, the wear mechanism of the nano-eutectic Fe1.87C0.13 alloy is transformed from plowing to fatigue flaking pits, whereas that of the annealed coarse-grained Fe1.87C0.13 alloy is transformed from plowing to fatigue flaking pits then to severe fatigue wear.  相似文献   

2.
Fretting wear of Ti-48Al-2Cr-2Nb   总被引:1,自引:0,他引:1  
An investigation was conducted to examine the wear behavior of gamma titanium aluminide (Ti-48Al-2Cr-2Nb in atomic percent) in contact with a typical nickel-base superalloy under repeated microscopic vibratory motion in air at temperatures from 296–823 K. The surface damage observed on the interacting surfaces of both Ti-48Al-2Cr-2Nb and superalloy consisted of fracture pits, oxides, metallic debris, scratches, craters, plastic deformation, and cracks. The Ti-48Al-2Cr-2Nb transferred to the superalloy at all fretting conditions and caused scuffing or galling. The increasing rate of oxidation at elevated temperatures led to a drop in Ti-48Al-2Cr-2Nb wear at 473 K. Mild oxidative wear was observed at 473 K. However, fretting wear increased as the temperature was increased from 473–823 K. At 723 and 823 K, oxide disruption generated cracks, loose wear debris, and pits on the Ti-48Al-2Cr-2Nb wear surface. Ti-48Al-2Cr-2Nb wear generally decreased with increasing fretting frequency. Both increasing slip amplitude and increasing load tended to produce more metallic wear debris, causing severe abrasive wear in the contacting metals.  相似文献   

3.
The initial stage of oxidation of Ti-47Al-2Nb-2Cr-0.15B and Ti-45Al-15Nb alloys was studied. Studies reveal that the X and NbCr2 phases will form in advance in the transition layer of the 2Nb2Cr alloy compared with the 15Nb alloy. The adherence between the nitride layer and underling layer is good. However, an obvious boundary exists between the mixed layer and the inner layer. The recrystallizing of the base alloy leads to an increase of the volume fraction of grain boundaries that can increase the oxidation rate at the initial oxidation stage. An Nb-based compound forms in the transition layer, which can prevent the formation of X phase.  相似文献   

4.
以气雾化法获得的Ti-22Al-25Nb(at.%)预合金粉末为初始原料,采用真空热压烧结工艺方法制备组织致密、成分均匀的粉末冶金Ti-22Al-25Nb合金。应用有限元软件MSC.Marc对Ti-22Al-25Nb(at.%)预合金粉末的致密化过程进行数值模拟,分析了温度和压力对Ti-22Al-25Nb粉末致密化过程的影响,揭示了粉末相对密度随温度和压力变化的规律,得到优化的烧结工艺参数,以指导热压实验烧结。通过热压烧结实验制备了组织致密、成分均匀的Ti-22Al-25Nb合金,发现1 050 ℃/35 MPa/1 h条件下烧结的合金具有最优的室温和650 ℃高温综合力学性能。  相似文献   

5.
Textured diamond-like carbon (DLC) films with the pattern of parallel grooves were developed by depositing DLC on textured stainless substrates in a PVD system. The texturing effects on tribological performance of DLC in water-lubricated condition were investigated. Results show that introducing specific patterns into DLC film not only retains the low friction coefficients, but also dramatically extends coating lifetime through affecting the coating delamination behavior and graphitization process during friction. Besides the adherence difference induced by surface texturing which could influence the delamination, another possible mechanism, “buffer stripes”, which is characteristic of the lateral soft/hard periodical structure, was proposed by us based on the Micro-Raman spectroscopy and nanoindentation analysis. Additionally, a much lower graphitization for textured DLC during friction may also be responsible for the improved wear resistance.  相似文献   

6.
利用自制的温度循环中叠加拉应力循环的热疲劳试验机 ,研究了Ti- 2 2Al- 2 7Nb合金经不同温度固溶处理后的热疲劳行为。结果表明 ,固溶处理后合金的热疲劳寿命得到了明显的提高 ,110 0℃固溶处理后可使试样的热疲劳寿命提高近 3倍。  相似文献   

7.
选用Ti-22Al-25Nb预合金粉末为实验初始原料,采用放电等离子烧结工艺(SPS)制备组织致密的粉末冶金Ti-22Al-25Nb合金。采用MSC.Marc有限元软件对SPS过程中粉末的致密化过程进行了数值模拟,分析了烧结温度、保温时间和烧结压力对粉末致密化过程的影响,揭示了粉末相对密度随烧结温度、保温时间和烧结压力的变化规律。根据模拟结果,在950~1 200 ℃温度区间、50 MPa烧结压力和10~20 min保温时间的条件下,完成系列SPS烧结实验,制备获得Ti-22Al-25Nb合金。系统分析了50 MPa/10 min烧结条件下温度对Ti-22Al-25Nb合金的相对密度、显微组织和力学性能的影响,揭示了烧结合金的断裂机制。实验结果表明烧结合金在950 ℃/50 MPa/10 min条件下具有最优的综合力学性能,延伸率和屈服强度分别达到8.14%和691.04 MPa。  相似文献   

8.
In this article, the tribological behaviors of Cu–30wt% Pb (denoted as CuPb) alloy sliding against aluminum bronze ZCuAl9Mn2 lubricated by seawater were investigated. It was found that the friction coefficients decrease with increasing load and sliding speed, and the wear rates increase slightly with applied load but decrease with sliding speed. The low friction coefficient and wear rate can be attributed to the seawater as a lubrication medium, which has lubricating, cooling, and corrosive effects on the sliding couple.  相似文献   

9.
A detailed study has been made on the wear behaviour of untreated and plasma nitrided Ti-5Al-2Nb-1Ta orthopaedic alloy against ultra high molecular weight polyethylene (UHMWPE) using pin on disc tribometer under lubricated conditions. The effects of nitriding temperature and nitriding time on the basis of the evolution of the wear volume loss and friction coefficient were investigated. The wear resistance of the plasma nitrided alloys increased considerably when compared to the untreated alloy. The wear debris identified using X-ray diffraction measurements indicated the formation of titanium oxide and titanium oxynitride particles. The wear rate was found to increase with increase in load and sliding velocity.  相似文献   

10.
The tribological behaviors of three silicon-based materials (low temperature silicon oxide (LTO), polysilicon (Poly Si) and silicon nitride (Si3N4) films) under ion liquids (ILs) lubrication have been investigated by varying the applied load and the sliding velocity. An atomic force microscope and a nanoindentor were used to characterize the deposited films, and the worn surfaces after frictional tests were analyzed by an optical microscope, a scanning electron microscope (SEM) with an energy dispersive spectrometer (EDS) and an X-ray photoelectron spectrometer (XPS). The results show the best lubricating properties of the IL lubricants are obtained at the intermediate load of 150 g for the three tribo-pairs. For the Si3N4/Si3N4 tribo-pair, the coefficients of friction (COFs) and the wear rates under ILs lubrication are larger than those under dry friction. The COF values decrease with sliding velocity, and the COFs of the Si3N4/Si3N4 tribo-pair are greater than the ones of the other two tribo-pairs (LTO/Si3N4 and Poly Si/Si3N4) at low velocities. The COF of 1-ethyl-3-methylimidazolium tetrafluoroborate is nearly 3 times larger than the other two IL lubricants (1-butyl-2,3-dimethylimidazolium tetrafluoroborate and N-butylpyridinium tetrafluoroborate) for the Si3N4/Si3N4 tribo-pair. The differences in COFs between the latter two lubricants for the three tribo-pairs are negligible. Different mechanisms of these results have been analyzed in the paper.  相似文献   

11.
采用环块式摩擦磨损实验研究了一种新型摩擦材料在水润滑状态下不同载荷与转速对试样摩擦学性能的影响,并对比干摩擦条件下的摩擦学性能变化,借助磨损表面形貌观察分析其磨损机理。实验结果表明:水润滑条件下,摩擦系数随着载荷的增大而减小,随着转速的提高先增加后减小;磨损率随着载荷与转速的提高都减小。相同载荷与转速下,干摩擦时磨损机理以磨粒磨损和黏着磨损为主,而水润滑条件下水形成边界润滑,磨损机理以磨粒磨损和轻微的黏着磨损为主;水润滑条件下摩擦系数和磨损率均低于干摩擦,主要是由于水起到了润滑和冷却的作用,阻止了转移膜的形成,并在材料表面形成水膜起到了边界润滑的作用。  相似文献   

12.
采用静态氧化试验和XRD、SEM、EDS等测试方法分析了机械合金化制备铁基高温合金Fe-12Cr-2.5W-0.4Ti-0.3Y2O3在空气中的高温氧化行为及其氧化机理.结果表明:合金氧化程度随温度的升高而提高,随时间的延长质量增加速率不断减小,且质量增加曲线近似为抛物线;合金在650℃和850℃下氧化80 h后,表层...  相似文献   

13.
The aim of this study is to compare the tribological behaviour of novel orthopaedic implant alloy Ti-13Nb-13Zr with that of the standard Ti-6Al-4V ELI alloy, available in four different microstructural conditions produced by variations in the heat treatments. The friction and wear tests were performed by using a block-on-disc tribometer in Ringer’s solution at ambient temperature with a normal load of 20–60 N and sliding speed of 0.26–1.0 m/s. It was found that variations in microstructures produced significant variations in the wear resistance of Ti-6Al-4V ELI alloy. The wear losses of materials solution treated (ST) above the β transus temperature are significantly lower compared with those of materials ST in the (α + β) phase field and are almost insensitive to applied load and sliding speed. Wear loss of the (α + β) ST Ti-6Al-4V ELI alloy continuously increased as applied load was increased and was highest at the highest sliding speed. The Ti-6Al-4V ELI alloy in all microstructural conditions possesses a much better wear resistance than cold-rolled Ti-13Nb-13Zr alloy. Friction results and morphology of worn surfaces showed that the observed behaviour is attributed to the predominant wear damage mechanism.  相似文献   

14.
采用离子氮碳共渗与离子渗硫复合处理技术在45#钢表面形成FeS固体润滑复合层,在摩擦磨损试验机上考察其在含0.1%(质量分数)纳米SiO2液体石蜡润滑下的摩擦学性能。结果表明:制备的FeS固体润滑复合层表面微纳米量级的硫化物颗粒与微纳孔隙分布均匀,其相组成主要为FeS、FeS2和Fe3N;在0.1%纳米SiO2液体石蜡润滑下,复合层与纳米SiO2添加剂产生协同作用,磨损表面形成了由硫化物、硫酸盐、氮化物等组成的化学反应膜,使FeS固体润滑复合层表面摩擦因数最低,始终保持在0.08左右,体积磨损量最小,比未渗表面(摩擦6min)降低了96%,比渗硫表面和氮碳共渗表面分别降低了89%和22%。  相似文献   

15.
Journal of Mechanical Science and Technology - We compared the corrosion resistance behavior of Ti-6Al-4V and Ti-6Al-7Nb alloy in micro-milling operation. The influence of parameters such as...  相似文献   

16.
Aiming at improving the tribological performances of sliding bearings in mixed or starved lubrication regime, textures in square and linear radiating arrays are ablated on the surface of Babbitt alloy disks by laser radiation. Series of pin-on-disk wear tests and computational fluid dynamics (CFD) analysis are conducted to investigate the influence of distribution and geometry of the textures under various operating conditions. Results suggest that surface texturing suitably interacts with the material properties of Babbitt metal favorably improving its tribological performance. Friction coefficients of the disks with textures arrayed in square are generally much lower and more stable as compared to their counterparts with textures arrayed in linear radiation. Also, textures arrayed in a square with an area density of 8.6 % allow the lowest friction coefficient, as low as 0.015, to be achievable. Theoretical analysis sheds the light that proper texture arrangements tend to generate favorable distribution of micro-hydrodynamic pressure to improve the tribological performance of Babbitt alloy significantly.  相似文献   

17.
The tribological behavior of novel, deagglomerated, and active molybdenum disulfide (MoS2) nanoparticles as additives in paraffin oil is presented. In a novel approach, the MoS2 nanoparticles were activated by their intercalation with organic molecules, particularly triglycerides (canola oil) and lecithin (source of phosphorus). A four-ball tribological test setup was used to measure the wear scar diameter, the coefficient of friction, and the extreme pressure properties of such formulated paraffin oils. The results showed significant influence of this uniquely designed MoS2 nanostructured additive on the coefficient of friction (0.07), the wear scar diameter, and the extreme pressure (315 kg) properties of the paraffin oil. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy dispersive x-ray spectroscopy (EDS) were also used for investigating size, the surface morphology, and the elemental composition of the nanoengineered lubricant. The characterization revealed a particle size less than 100 nm and the elemental composition analysis of the wear track showed the presence of Mo, S, and P in the tribofilm, explaining the observed improvements in the tribological properties.  相似文献   

18.
Abstract

In this work, Al-20Si-5Fe-2Ni/ZrB2 composites with 0–20?wt% ZrB2 were fabricated by spark plasma sintering. The effects of ZrB2 content on the microstructure, mechanical properties and high-temperature tribological behavior of the composites were investigated. The results indicate that Si, Al5FeSi, and ZrB2 particles are uniformly distributed in the aluminum matrix. The density, hardness, and compressive strength increase with increasing ZrB2 content. The friction coefficient and wear rate are dependent on the ZrB2 content and test temperature. At a certain temperature, the friction coefficient increases with an increase in ZrB2 content, whereas the wear rate shows a reverse trend. Due to the improvement in thermal stability and high-temperature softening resistance, the composite shows improved wear resistance and increased transition temperature from mild wear to severe wear.  相似文献   

19.
Tribological properties of nanocrystalline (NC) nickel coating and coarse-grained nickel coating were evaluated using a ball-on-flat sliding tester. Results indicated that the NC nickel coating had excellent tribological properties. This was partly attributed to the high hardness of the NC nickel coating and the tribochemical interactions between rubbing pairs and ionic liquid.  相似文献   

20.
Friction under boundary lubrication was measured using a pendulum-type friction machine. Long straight-chain fatty acids with even carbon numbers, amine, and alcohol were used as additives, and n-hexadecane was used as the base oil.

Effect of the temperature, chain length of additives and additive concentration were investigated.

The phenomena obtained under 373 K were as follows:

1) “Transition concentration” wherein a drastic change of friction coefficient appeared were observed.

2) “Transition concentration” of amine or alcohol solutions appeared at higher concentration than that of acid solution.

3) In “high concentration region,” the friction coefficient gradually increased with the decrease of the concentration.

4) Temperature raise caused a high friction coefficient.

5) Friction coefficient gradually decreased with an increase in chain length.

6) “Transition concentration” shifted toward low concentration with an increase in chain length.

7) No chain-matching effect was observed.

These results are explained introducing a new concept of adsorption mechanism, where both mechanical disturbance, i.e. friction, and adsorption-desorption process of molecules are taken into consideration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号