首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Architectures depict design principles: paradigms that can be understood by all, allow thinking on a higher plane and avoiding low-level mistakes. They provide means for ensuring correctness by construction by enforcing global properties characterizing the coordination between components. An architecture can be considered as an operator A that, applied to a set of components \({\mathcal{B}}\), builds a composite component \({A(\mathcal{B})}\) meeting a characteristic property \({\Phi}\). Architecture composability is a basic and common problem faced by system designers. In this paper, we propose a formal and general framework for architecture composability based on an associative, commutative and idempotent architecture composition operator \({\oplus}\). The main result is that if two architectures A 1 and A 2 enforce respectively safety properties \({\Phi_{1}}\) and \({\Phi_{2}}\), the architecture \({A_{1} \oplus A_{2}}\) enforces the property \({\Phi_{1} \land \Phi_{2}}\), that is both properties are preserved by architecture composition. We also establish preservation of liveness properties by architecture composition. The presented results are illustrated by a running example and a case study.  相似文献   

2.
We initiate studying the Remote Set Problem (\({\mathsf{RSP}}\)) on lattices, which given a lattice asks to find a set of points containing a point which is far from the lattice. We show a polynomial-time deterministic algorithm that on rank n lattice \({\mathcal{L}}\) outputs a set of points, at least one of which is \({\sqrt{\log n / n} \cdot \rho(\mathcal{L})}\) -far from \({\mathcal{L}}\) , where \({\rho(\mathcal{L})}\) stands for the covering radius of \({\mathcal{L}}\) (i.e., the maximum possible distance of a point in space from \({\mathcal{L}}\)). As an application, we show that the covering radius problem with approximation factor \({\sqrt{n / \log n}}\) lies in the complexity class \({\mathsf{NP}}\) , improving a result of Guruswami et al. (Comput Complex 14(2): 90–121, 2005) by a factor of \({\sqrt{\log n}}\) .Our results apply to any \({\ell_p}\) norm for \({2 \leq p \leq \infty}\) with the same approximation factors (except a loss of \({\sqrt{\log \log n}}\) for \({p = \infty}\)). In addition, we show that the output of our algorithm for \({\mathsf{RSP}}\) contains a point whose \({\ell_2}\) distance from \({\mathcal{L}}\) is at least \({(\log n/n)^{1/p} \cdot \rho^{(p)}(\mathcal{L})}\) , where \({\rho^{(p)}(\mathcal{L})}\) is the covering radius of \({\mathcal{L}}\) measured with respect to the \({\ell_p}\) norm. The proof technique involves a theorem on balancing vectors due to Banaszczyk (Random Struct Algorithms 12(4):351–360, 1998) and the “six standard deviations” theorem of Spencer (Trans Am Math Soc 289(2):679–706, 1985).  相似文献   

3.
The set of all primitive words Q over an alphabet X was first defined and studied by Shyr and Thierrin (Proceedings of the 1977 Inter. FCT-Conference, Poznan, Poland, Lecture Notes in Computer Science 56. pp. 171–176 (1977)). It showed that for the case |X| ≥ 2, the set along with \({Q^{(i)} = \{f^i\,|\,f \in Q\}, i\geq 2}\) are all disjunctive. Since then these disjunctive sets are often be quoted. Following Shyr and Thierrin showed that the half sets \({Q_{ev} = \{f \in Q\,|\,|f| = {\rm even}\}}\) and Q od = Q \ Q ev of Q are disjunctive, Chien proved that each of the set \({Q_{p,r}= \{u\in Q\,|\,|u|\equiv r\,(mod\,p) \},\,0\leq r < p}\) is disjunctive, where p is a prime number. In this paper, we generalize this property to that all the languages \({Q_{n,r}= \{u\in Q\,|\,|u|\equiv r\,(mod\,n) \},\, 0\leq r < n}\) are disjunctive languages, where n is any positive integer. We proved that for any n ≥ 1, k ≥ 2, (Q n,0) k are all regular languages. Some algebraic properties related to the family of languages {Q n,r | n ≥ 2, 0 ≤ r < n } are investigated.  相似文献   

4.
We consider optimization problems of the form (S, cost), where S is a clause set over Boolean variables x 1?...?x n , with an arbitrary cost function \(\mathit{cost}\colon \mathbb{B}^n \rightarrow \mathbb{R}\), and the aim is to find a model A of S such that cost(A) is minimized. Here we study the generation of proofs of optimality in the context of branch-and-bound procedures for such problems. For this purpose we introduce \(\mathtt{DPLL_{BB}}\), an abstract DPLL-based branch-and-bound algorithm that can model optimization concepts such as cost-based propagation and cost-based backjumping. Most, if not all, SAT-related optimization problems are in the scope of \(\mathtt{DPLL_{BB}}\). Since many of the existing approaches for solving these problems can be seen as instances, \(\mathtt{DPLL_{BB}}\) allows one to formally reason about them in a simple way and exploit the enhancements of \(\mathtt{DPLL_{BB}}\) given here, in particular its uniform method for generating independently verifiable optimality proofs.  相似文献   

5.
Let \(H_{1}, H_{2},\ldots ,H_{n}\) be separable complex Hilbert spaces with \(\dim H_{i}\ge 2\) and \(n\ge 2\). Assume that \(\rho \) is a state in \(H=H_1\otimes H_2\otimes \cdots \otimes H_n\). \(\rho \) is called strong-k-separable \((2\le k\le n)\) if \(\rho \) is separable for any k-partite division of H. In this paper, an entanglement witnesses criterion of strong-k-separability is obtained, which says that \(\rho \) is not strong-k-separable if and only if there exist a k-division space \(H_{m_{1}}\otimes \cdots \otimes H_{m_{k}}\) of H, a finite-rank linear elementary operator positive on product states \(\Lambda :\mathcal {B}(H_{m_{2}}\otimes \cdots \otimes H_{m_{k}})\rightarrow \mathcal {B}(H_{m_{1}})\) and a state \(\rho _{0}\in \mathcal {S}(H_{m_{1}}\otimes H_{m_{1}})\), such that \(\mathrm {Tr}(W\rho )<0\), where \(W=(\mathrm{Id}\otimes \Lambda ^{\dagger })\rho _{0}\) is an entanglement witness. In addition, several different methods of constructing entanglement witnesses for multipartite states are also given.  相似文献   

6.
This paper is devoted to automatic competitive analysis of real-time scheduling algorithms for firm-deadline tasksets, where only completed tasks contribute some utility to the system. Given such a taskset \({\mathcal {T}}\), the competitive ratio of an on-line scheduling algorithm \({\mathcal {A}}\) for \({\mathcal {T}}\) is the worst-case utility ratio of \({\mathcal {A}}\) over the utility achieved by a clairvoyant algorithm. We leverage the theory of quantitative graph games to address the competitive analysis and competitive synthesis problems. For the competitive analysis case, given any taskset \({\mathcal {T}}\) and any finite-memory on-line scheduling algorithm \({\mathcal {A}}\), we show that the competitive ratio of \({\mathcal {A}}\) in \({\mathcal {T}}\) can be computed in polynomial time in the size of the state space of \({\mathcal {A}}\). Our approach is flexible as it also provides ways to model meaningful constraints on the released task sequences that determine the competitive ratio. We provide an experimental study of many well-known on-line scheduling algorithms, which demonstrates the feasibility of our competitive analysis approach that effectively replaces human ingenuity (required for finding worst-case scenarios) by computing power. For the competitive synthesis case, we are just given a taskset \({\mathcal {T}}\), and the goal is to automatically synthesize an optimal on-line scheduling algorithm \({\mathcal {A}}\), i.e., one that guarantees the largest competitive ratio possible for \({\mathcal {T}}\). We show how the competitive synthesis problem can be reduced to a two-player graph game with partial information, and establish that the computational complexity of solving this game is Np-complete. The competitive synthesis problem is hence in Np in the size of the state space of the non-deterministic labeled transition system encoding the taskset. Overall, the proposed framework assists in the selection of suitable scheduling algorithms for a given taskset, which is in fact the most common situation in real-time systems design.  相似文献   

7.
A circuit C compresses a function \({f : \{0,1\}^n\rightarrow \{0,1\}^m}\) if given an input \({x\in \{0,1\}^n}\), the circuit C can shrink x to a shorter ?-bit string x′ such that later, a computationally unbounded solver D will be able to compute f(x) based on x′. In this paper we study the existence of functions which are incompressible by circuits of some fixed polynomial size \({s=n^c}\). Motivated by cryptographic applications, we focus on average-case \({(\ell,\epsilon)}\) incompressibility, which guarantees that on a random input \({x\in \{0,1\}^n}\), for every size s circuit \({C:\{0,1\}^n\rightarrow \{0,1\}^{\ell}}\) and any unbounded solver D, the success probability \({\Pr_x[D(C(x))=f(x)]}\) is upper-bounded by \({2^{-m}+\epsilon}\). While this notion of incompressibility appeared in several works (e.g., Dubrov and Ishai, STOC 06), so far no explicit constructions of efficiently computable incompressible functions were known. In this work, we present the following results:
  1. (1)
    Assuming that E is hard for exponential size nondeterministic circuits, we construct a polynomial time computable boolean function \({f:\{0,1\}^n\rightarrow \{0,1\}}\) which is incompressible by size n c circuits with communication \({\ell=(1-o(1)) \cdot n}\) and error \({\epsilon=n^{-c}}\). Our technique generalizes to the case of PRGs against nonboolean circuits, improving and simplifying the previous construction of Shaltiel and Artemenko (STOC 14).
     
  2. (2)
    We show that it is possible to achieve negligible error parameter \({\epsilon=n^{-\omega(1)}}\) for nonboolean functions. Specifically, assuming that E is hard for exponential size \({\Sigma_3}\)-circuits, we construct a nonboolean function \({f:\{0,1\}^n\rightarrow \{0,1\}^m}\) which is incompressible by size n c circuits with \({\ell=\Omega(n)}\) and extremely small \({\epsilon=n^{-c} \cdot 2^{-m}}\). Our construction combines the techniques of Trevisan and Vadhan (FOCS 00) with a new notion of relative error deterministic extractor which may be of independent interest.
     
  3. (3)
    We show that the task of constructing an incompressible boolean function \({f:\{0,1\}^n\rightarrow \{0,1\}}\) with negligible error parameter \({\epsilon}\) cannot be achieved by “existing proof techniques”. Namely, nondeterministic reductions (or even \({\Sigma_i}\) reductions) cannot get \({\epsilon=n^{-\omega(1)}}\) for boolean incompressible functions. Our results also apply to constructions of standard Nisan-Wigderson type PRGs and (standard) boolean functions that are hard on average, explaining, in retrospect, the limitations of existing constructions. Our impossibility result builds on an approach of Shaltiel and Viola (STOC 08).
     
  相似文献   

8.
Recall that Lebesgue’s singular function L(t) is defined as the unique solution to the equation L(t) = qL(2t) + pL(2t ? 1), where p, q > 0, q = 1 ? p, pq. The variables M n = ∫01t n dL(t), n = 0,1,… are called the moments of the function The principal result of this work is \({M_n} = {n^{{{\log }_2}p}}{e^{ - \tau (n)}}(1 + O({n^{ - 0.99}}))\), where the function τ(x) is periodic in log2x with the period 1 and is given as \(\tau (x) = \frac{1}{2}1np + \Gamma '(1)lo{g_2}p + \frac{1}{{1n2}}\frac{\partial }{{\partial z}}L{i_z}( - \frac{q}{p}){|_{z = 1}} + \frac{1}{{1n2}}\sum\nolimits_{k \ne 0} {\Gamma ({z_k})L{i_{{z_k} + 1}}( - \frac{q}{p})} {x^{ - {z_k}}}\), \({z_k} = \frac{{2\pi ik}}{{1n2}}\), k ≠ 0. The proof is based on poissonization and the Mellin transform.  相似文献   

9.
This paper studies the problem of approximating a function f in a Banach space \(\mathcal{X}\) from measurements \(l_j(f)\), \(j=1,\ldots ,m\), where the \(l_j\) are linear functionals from \(\mathcal{X}^*\). Quantitative results for such recovery problems require additional information about the sought after function f. These additional assumptions take the form of assuming that f is in a certain model class \(K\subset \mathcal{X}\). Since there are generally infinitely many functions in K which share these same measurements, the best approximation is the center of the smallest ball B, called the Chebyshev ball, which contains the set \(\bar{K}\) of all f in K with these measurements. Therefore, the problem is reduced to analytically or numerically approximating this Chebyshev ball. Most results study this problem for classical Banach spaces \(\mathcal{X}\) such as the \(L_p\) spaces, \(1\le p\le \infty \), and for K the unit ball of a smoothness space in \(\mathcal{X}\). Our interest in this paper is in the model classes \(K=\mathcal{K}(\varepsilon ,V)\), with \(\varepsilon >0\) and V a finite dimensional subspace of \(\mathcal{X}\), which consists of all \(f\in \mathcal{X}\) such that \(\mathrm{dist}(f,V)_\mathcal{X}\le \varepsilon \). These model classes, called approximation sets, arise naturally in application domains such as parametric partial differential equations, uncertainty quantification, and signal processing. A general theory for the recovery of approximation sets in a Banach space is given. This theory includes tight a priori bounds on optimal performance and algorithms for finding near optimal approximations. It builds on the initial analysis given in Maday et al. (Int J Numer Method Eng 102:933–965, 2015) for the case when \(\mathcal{X}\) is a Hilbert space, and further studied in Binev et al. (SIAM UQ, 2015). It is shown how the recovery problem for approximation sets is connected with well-studied concepts in Banach space theory such as liftings and the angle between spaces. Examples are given that show how this theory can be used to recover several recent results on sampling and data assimilation.  相似文献   

10.
In the List H- Homomorphism Problem, for a graph H that is a parameter of the problem, an instance consists of an undirected graph G with a list constraint \({L(v) \subseteq V(H)}\) for each variable \({v \in V(G)}\), and the objective is to determine whether there is a list H-homomorphism \({f:V(G) \to V(H)}\), that is, \({f(v) \in L(v)}\) for every \({v \in V(G)}\) and \({(f(u),f(v)) \in E(H)}\) whenever \({(u,v) \in E(G)}\).We consider the problem of testing list H-homomorphisms in the following weighted setting: An instance consists of an undirected graph G, list constraints L, weights imposed on the vertices of G, and a map \({f:V(G) \to V(H)}\) given as an oracle access. The objective is to determine whether f is a list H-homomorphism or far from any list H-homomorphism. The farness is measured by the total weight of vertices \({v \in V(G)}\) for which f(v) must be changed so as to make f a list H-homomorphism. In this paper, we classify graphs H with respect to the number of queries to f required to test the list H-homomorphisms. Specifically, we show that (i) list H-homomorphisms are testable with a constant number of queries if and only if H is a reflexive complete graph or an irreflexive complete bipartite graph and (ii) list H-homomorphisms are testable with a sublinear number of queries if and only if H is a bi-arc graph.  相似文献   

11.
The calculus T? is a successor-free version of Gödel’s T. It is well known that a number of important complexity classes, like e.g. the classes logspace, \(\textsc{p}\), \(\textsc{linspace}\), \(\textsc{etime}\) and \(\textsc{pspace}\), are captured by natural fragments of T? and related calculi. We introduce the calculus T, which is a non-deterministic variant of T?, and compare the computational power of T and T?. First, we provide a denotational semantics for T and prove this semantics to be adequate. Furthermore, we prove that \(\textsc{linspace}\subseteq \mathcal {G}^{\backsim }_{0} \subseteq \textsc{linspace}\) and \(\textsc{etime}\subseteq \mathcal {G}^{\backsim }_{1} \subseteq \textsc{pspace}\) where \(\mathcal {G}^{\backsim }_{0}\) and \(\mathcal {G}^{\backsim }_{1}\) are classes of problems decidable by certain fragments of T. (It is proved elsewhere that the corresponding fragments of T? equal respectively \(\textsc{linspace}\) and \(\textsc{etime}\).) Finally, we show a way to interpret T in T?.  相似文献   

12.
One way to depict a crystallographic structure is by a periodic (di)graph, i.e., a graph whose group of automorphisms has a translational subgroup of finite index acting freely on the structure. We establish a relationship between periodic graphs representing crystallographic structures and an infinite hierarchy of intersection languages \(\mathcal {DCL}_d,\,d=0,1,2,\ldots \), within the intersection classes of deterministic context-free languages. We introduce a class of counter machines that accept these languages, where the machines with d counters recognize the class \(\mathcal {DCL}_d\). An intersection of d languages in \(\mathcal {DCL}_1\) defines \(\mathcal {DCL}_d\). We prove that there is a one-to-one correspondence between sets of walks starting and ending in the same unit of a d-dimensional periodic (di)graph and the class of languages in \(\mathcal {DCL}_d\). The proof uses the following result: given a digraph \(\Delta \) and a group G, there is a unique digraph \(\Gamma \) such that \(G\le \mathrm{Aut}\,\Gamma ,\,G\) acts freely on the structure, and \(\Gamma /G \cong \Delta \).  相似文献   

13.
This paper describes a generalized tweakable blockcipher HPH (Hash-Permutation-Hash), which is based on a public random permutation P and a family of almost-XOR-universal hash functions \( \mathcal{H}={\left\{ HK\right\}}_{K\in \mathcal{K}} \) as a tweak and key schedule, and defined as y = HPHK((t1, t2), x) = P(xHK(t1)) ⊕ HK(t2), where K is a key randomly chosen from a key space \( \mathcal{K} \), (t1, t2) is a tweak chosen from a valid tweak space \( \mathcal{T} \), x is a plaintext, and y is a ciphertext. We prove that HPH is a secure strong tweakable pseudorandom permutation (STPRP) by using H-coefficients technique. Then we focus on the security of HPH against multi-key and related-key attacks. We prove that HPH achieves both multi-key STPRP security and related-key STPRP security. HPH can be extended to wide applications. It can be directly applied to authentication and authenticated encryption modes. We apply HPH to PMAC1 and OPP, provide an improved authentication mode HPMAC and a new authenticated encryption mode OPH, and prove that the two modes achieve single-key security, multi-key security, and related-key security.  相似文献   

14.
The Surjective Homomorphism problem is to test whether a given graph G called the guest graph allows a vertex-surjective homomorphism to some other given graph H called the host graph. The bijective and injective homomorphism problems can be formulated in terms of spanning subgraphs and subgraphs, and as such their computational complexity has been extensively studied. What about the surjective variant? Because this problem is NP-complete in general, we restrict the guest and the host graph to belong to graph classes \({{\mathcal G}}\) and \({{\mathcal H}}\), respectively. We determine to what extent a certain choice of \({{\mathcal G}}\) and \({{\mathcal H}}\) influences its computational complexity. We observe that the problem is polynomial-time solvable if \({{\mathcal H}}\) is the class of paths, whereas it is NP-complete if \({{\mathcal G}}\) is the class of paths. Moreover, we show that the problem is even NP-complete on many other elementary graph classes, namely linear forests, unions of complete graphs, cographs, proper interval graphs, split graphs and trees of pathwidth at most 2. In contrast, we prove that the problem is fixed-parameter tractable in k if \({{\mathcal G}}\) is the class of trees and \({{\mathcal H}}\) is the class of trees with at most k leaves, or if \({{\mathcal G}}\) and \({{\mathcal H}}\) are equal to the class of graphs with vertex cover number at most k.  相似文献   

15.
Motivated by constraint satisfaction problems, Feder and Vardi (SIAM Journal of Computing, 28, 57–104, 1998) set out to search for fragments \({\mathcal{L}}\) of \(\Sigma_1^1\) satisfying the dichotomy property: every problem definable in \({\mathcal{L}}\) is either in P or else NP-complete. Feder and Vardi considered in this connection two logics, strict NP (or SNP) and monadic, monotone, strict NP without inequalities (or MMSNP). The former consists of formulas of the form \(\exists \vec{X}\forall \vec{x} \phi\), where \(\phi\) is a quantifier-free formula in a relational vocabulary; and the latter is the fragment of SNP whose formulas involve only negative occurrences of relation symbols, only monadic second-order quantifiers, and no occurrences of the equality symbol. It remains an open problem whether MMSNP enjoys the dichotomy property. In the present paper, SNP and MMSNP are characterized in terms of partially ordered connectives. More specifically, SNP is characterized using the logic D of partially ordered connectives introduced in Blass and Gurevich (Annals of Pure and Applied Logic, 32, 1–16, 1986), Sandu and Väänänen (Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 38, 361–372 1992), and MMSNP employing a generalization C of D introduced in the present paper.  相似文献   

16.
Consider a set of labels L and a set of unordered trees \(\mathcal{T}=\{\mathcal{T}^{(1)},\mathcal{T}^{(2)},\ldots ,\allowbreak \mathcal{T}^{(k)}\}\) where each tree \(\mathcal{T}^{(i)}\) is distinctly leaf-labeled by some subset of L. One fundamental problem is to find the biggest tree (denoted as supertree) to represent \(\mathcal{T}\) which minimizes the disagreements with the trees in \(\mathcal{T}\) under certain criteria. In this paper, we focus on two particular supertree problems, namely, the maximum agreement supertree problem (MASP) and the maximum compatible supertree problem (MCSP). These two problems are known to be NP-hard for k≥3. This paper gives improved algorithms for both MASP and MCSP. In particular, our results imply the first polynomial time algorithms for both MASP and MCSP when both k and the maximum degree D of the input trees are constant.  相似文献   

17.
In quantum cryptography, a one-way permutation is a bounded unitary operator \(U:\mathcal {H} \rightarrow \mathcal {H}\) on a Hilbert space \(\mathcal {H}\) that is easy to compute on every input, but hard to invert given the image of a random input. Levin (Probl Inf Transm 39(1):92–103, 2003) has conjectured that the unitary transformation \(g(a,x)=(a,f(x)+ax)\), where f is any length-preserving function and \(a,x \in \hbox {GF}_{{2}^{\Vert x\Vert }}\), is an information-theoretically secure operator within a polynomial factor. Here, we show that Levin’s one-way permutation is provably secure because its output values are four maximally entangled two-qubit states, and whose probability of factoring them approaches zero faster than the multiplicative inverse of any positive polynomial poly(x) over the Boolean ring of all subsets of x. Our results demonstrate through well-known theorems that existence of classical one-way functions implies existence of a universal quantum one-way permutation that cannot be inverted in subexponential time in the worst case.  相似文献   

18.
19.
A method of constructing n 2 × n 2 matrix realization of Temperley–Lieb algebras is presented. The single loop of these realizations are \({d=\sqrt{n}}\). In particular, a 9 × 9-matrix realization with single loop \({d=\sqrt{3}}\) is discussed. A unitary Yang–Baxter \({\breve{R}\theta,q_{1},q_{2})}\) matrix is obtained via the Yang-Baxterization process. The entanglement properties and geometric properties (i.e., Berry Phase) of this Yang–Baxter system are explored.  相似文献   

20.
In the Intervalizing Coloured Graphs problem, one must decide for a given graph G = (V, E) with a proper vertex colouring of G whether G is the subgraph of a properly coloured interval graph. For the case that the number of colors is fixed, we give an exact algorithm that uses \(2^{\mathcal {O}(n/\log n)}\) time. We also give an \(\mathcal {O}^{\ast }(2^{n})\) algorithm for the case that the number of colors is not fixed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号