首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper is concerned with the robustness of the predictor feedback control of linear systems with input delays. By applying certain equivalent transformations on the characteristic equation associated with the closed-loop system, we first transform the robustness problem of a predictor feedback control system into the stability problem of a neutral time-delay system containing an integral operator in the derivative. The range of the allowable input delay for this neutral time-delay system can be computed by exploring its delay dependent stability conditions. In particular, delay dependent stability conditions for the neutral time-delay system are established by partitioning the delay into segments. The conservatism of this method can be reduced when the number of segments in the partition is increased. Numerical examples are worked out to illustrate the effectiveness of the proposed method.  相似文献   

2.
In this paper we show that a variety of stability conditions, both existing and new, can be derived for linear systems subject to time-varying delays in a unified manner in the form of scaled small-gain conditions. From a robust control perspective, our development seeks to cast the stability problem as one of robust stability analysis, and the resulting stability conditions are also reminiscent of robust stability bounds typically found in robust control theory. The development is built on the well-known conventional robust stability analysis, requiring essentially no more than a straightforward application of the small gain theorem. The derived conditions have conceptual appeal, and they can be checked using standard robust control toolboxes.  相似文献   

3.
The stabilization of exponentially unstable linear systems with time-varying input delay is considered in this paper. We extend the truncated predictor feedback (TPF) design method, which was recently developed for systems with all poles on the closed left-half plane, to be applicable to exponentially unstable linear systems. Assuming that the time-varying delay is known and bounded, the design approach of a time-varying state feedback controller is developed based on the solution of a parametric Lyapunov equation. An explicit condition is derived for which the stability of the closed-loop system with the proposed controller is guaranteed. It is shown that, for the stability of the closed-loop system, the maximum allowable time-delay in the input is inversely proportional to the sum of the unstable poles in the plant. The effectiveness of the proposed method is demonstrated through numerical examples.  相似文献   

4.
In this paper, constructive techniques are developed for a class of stochastic non‐linear systems with delays in input. Non‐linear terms considered in this paper are more general than those satisfying linear growth conditions. The purpose is to design an output feedback controller such that the resulting closed‐loop system is globally asymptotically stable in probability. The desired output feedback controller is explicitly constructed using the Lyapunov method. Copyright © 2009 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

5.
针对存在传输滞后的线性离散系统的状态反馈镇定问题,给出了系统可镇定的一个内部限制条件.为克服这一限制条件,提出了两种方法:一种是充分利用滞后状态的信息,另一种是设计带有递推动态的状态反馈控制器.研究结果表明,若系统在没有传输滞后时能通过状态反馈被镇定,则存在传输滞后时一定也能通过设计新的控制器使系统被镇定.  相似文献   

6.
We consider the problem of controlling a linear system when the state is available with a known time-varying delay (delayed-state feedback control) or the actuator is affected by a delay. The solution proposed in this paper consists in partially assigning the spectrum of the closed-loop system to guarantee the exponential zero-state stability with a prescribed decay rate by means of a finite-dimensional control law. A non conservative bound on the maximum allowed delay for the prescribed decay rate is presented, which holds for both cases of constant and time-varying delays. An advantage over recent and similar approaches is that differentiability or continuity of the delay function is not required. We compare the performance of our approach, in terms of delay bound and input signal, with another recent approach.  相似文献   

7.
The integral-inequality method is a new way of tackling the delay-dependent stabilization problem for a linear system with time-varying state and input delays: . In this paper, a new integral inequality for quadratic terms is first established. Then, it is used to obtain a new state- and input-delay-dependent criterion that ensures the stability of the closed-loop system with a memoryless state feedback controller. Finally, some numerical examples are presented to demonstrate that control systems designed based on the criterion are effective, even though neither (A,B1) nor (A+A1,B1) is stabilizable.  相似文献   

8.
Stability of systems in the presence of bounded uncertain time-varying delays in the feedback loop is studied. The delay parameter is assumed to be an unknown time-varying function for which the upper bounds on the magnitude and the variation are given. The stability problem is treated in the integral quadratic constraint (IQC) framework. Criteria for verifying robust stability are formulated as feasibility problems over a set of frequency-dependent linear matrix inequalities. The criteria can be equivalently formulated as semi-definite programs (SDP) using Kalman-Yakubovich-Popov lemma. As such, checking robust stability can be performed in a computationally efficient fashion.  相似文献   

9.
The output stabilization problem for a linear system with an unknown bounded time-varying input delay is considered. The interval observation technique is applied in order to obtain guaranteed interval estimate of the system state. The procedure of the interval observer synthesis uses lower and upper estimates of the unknown delay and requires to solve a special Silvester’s equation. The interval predictor is introduced in order to design a linear stabilizing feedback. The control design procedure is based on Linear Matrix Inequalities (LMI). The theoretical results are supported by numerical simulations and compared with a control design scheme based on a Luenberger-like observer.  相似文献   

10.
We solve stabilization problems for linear time-varying systems under input delays. We show how changes of coordinates lead to systems with time invariant drifts, which are covered by the reduction model method and which lead to the problem of stabilizing a time-varying system without delay. For continuous time periodic systems, we can use Floquet theory to find the changes of coordinates. We also prove an analogue for discrete time systems, through a discrete time extension of Floquet theory.  相似文献   

11.
Exponential stability analysis via the Lyapunov-Krasovskii method is extended to linear time-delay systems in a Hilbert space. The operator acting on the delayed state is supposed to be bounded. The system delay is admitted to be unknown and time-varying with an a priori given upper bound on the delay. Sufficient delay-dependent conditions for exponential stability are derived in the form of Linear Operator Inequalities (LOIs), where the decision variables are operators in the Hilbert space. Being applied to a heat equation and to a wave equation, these conditions are reduced to standard Linear Matrix Inequalities (LMIs). The proposed method is expected to provide effective tools for stability analysis and control synthesis of distributed parameter systems.  相似文献   

12.
In this paper, we consider the problem of global stabilization for a class of stochastic high-order feedforward nonlinear systems with time-varying delay. By introducing the homogeneous domination design method and constructing the appropriate Lyapunov–Krasovskii functional, a state feedback controller is constructed to drive the closed-loop system to be globally asymptotically stable in probability.  相似文献   

13.
New robust exponential stabilization criteria for interval time-varying delay systems with norm-bounded uncertainties are proposed. Based on the free-weighting matrices and new Lyapunov-Krasovskii functionals, such criteria are obtained by dealing with system model directly and designing memoryless state feedback controllers and expressed in terms of linear matrix inequalities (LMIs). Moreover, the criteria are applicable to the case whether the derivative of the time-varying delay is bounded or not. The state decay rate is estimated by the corresponding LMIs. Numerical examples are given to illustrate the effectiveness of the proposed method.  相似文献   

14.
This paper presents a sufficient condition to stabilize linear discrete-time systems with time-varying input delay and model uncertainties. The key idea consists of applying Artstein’s reduction method and the scaled bounded real lemma; the robust stabilization problem is cast as a set of linear matrix inequalities on a transformed delay-free system. Hence, a novel convex characterization of the problem, an alternative to bilinear matrix inequalities in prior literature, is provided. Predictor-based controllers and robust state-feedback stabilization are particular cases of the proposal. Furthermore, numerical examples show that this proposal may improve tolerance against delay variations when compared to other methods available in literature.  相似文献   

15.
On strong stabilization for linear time-varying systems   总被引:1,自引:0,他引:1  
This paper deals with the strong stabilization problem for linear time-varying systems and gives a sufficient condition, in terms of the coprime factors, for the existence of strong stabilizers for such a system.  相似文献   

16.
This paper considers the problem of checking stability of linear feedback systems with time-varying but bounded delays. Simple but powerful criteria of stability are presented for both continuous-time and discrete-time systems. Using these criteria, stability can be checked in a closed loop Bode plot. This makes it easy to design the system for robustness.  相似文献   

17.
The problem of compensation of arbitrary large input delay for nonlinear systems was solved recently with the introduction of the nonlinear predictor feedback. In this paper we solve the problem of compensation of input delay for nonlinear systems with simultaneous input and state delays of arbitrary length. The key challenge, in contrast to the case of only input delay, is that the input delay-free system (on which the design and stability proof of the closed-loop system under predictor feedback are based) is infinite-dimensional. We resolve this challenge and we design the predictor feedback law that compensates the input delay. We prove global asymptotic stability of the closed-loop system using two different techniques—one based on the construction of a Lyapunov functional, and one using estimates on solutions. We present two examples, one of a nonlinear delay system in the feedforward form with input delay, and one of a scalar, linear system with simultaneous input and state delays.  相似文献   

18.
This paper investigates output-feedback control for a class of stochastic high-order nonlinear systems with time-varying delay for the first time. By introducing the adding a power integrator technique in the stochastic systems and a rescaling transformation, and choosing an appropriate Lyapunov-Krasoviskii functional, an output-feedback controller is constructed to render the closed-loop system globally asymptotically stable in probability and the output can be regulated to the origin almost surely. A simulation example is provided to show the effectiveness of the designed controller.  相似文献   

19.
This work studies the design problem of feedback stabilisers for discrete-time systems with input delays. A backstepping procedure is proposed for disturbance-free discrete-time systems. The feedback law designed by using backstepping coincides with the predictor-based feedback law used in continuous-time systems with input delays. However, simple examples demonstrate that the sensitivity of the closed-loop system with respect to modelling errors increases as the value of the delay increases. The paper proposes a Lyapunov redesign procedure that can minimise the effect of the uncertainty. Specific results are provided for linear single-input discrete-time systems with multiplicative uncertainty. The feedback law that guarantees robust global exponential stability is a nonlinear, homogeneous of degree 1 feedback law.  相似文献   

20.
This paper studies the problems of stabilization of discrete‐time linear systems with a single input delay. By developing the methodology of pseudo‐predictor feedback, which uses the (artificial) closed‐loop system dynamics to predict the future state, memoryless state feedback control laws are constructed to solve the problem. Necessary and sufficient conditions are obtained to guarantee the stability of the closed‐loop system in terms of the stability of a class‐difference equations. It is also shown that the proposed controller achieves semi‐global stabilization of the system if its actuator is subject to either magnitude saturation or energy constraints under the condition that the open‐loop system is only polynomially unstable. Numerical examples have been worked out to illustrate the effectiveness of the proposed approaches. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号