首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Thermal discomfort is one of the major complaints from the wearers of industrial safety helmets. While studies have been reported on dry heat transfer (conduction, convection and radiation) in safety helmets, the investigation of wet heat dissipating (evaporation) properties has not been found in the literature. To evaluate experimentally the evaporative heat transfer characteristics of industrial safety helmets, a method was developed to simulate sweating of a human head on a thermal head manikin, and to use this manikin to assess the wet heat transfer of five industrial safety helmets. A thermal head manikin was covered with a form-fitting cotton stocking to simulate 'skin'. The skin was wetted with distilled water to simulate 'sweating'. A form-fitting perforated polyethylene film was used to cover the wetted stocking to control the skin wettedness at two levels, 0.64 and 1.0. Experiments were conducted in a climatic chamber, under the following conditions: the ambient temperature = head manikin surface temperature = 34 +/- 0.5 degrees C; ambient relative humidity 30% and 60%. Also, the effects of wind and a simulated solar heat load were investigated. The five helmets showed statistically significant difference in evaporative heat transfer under the experimental conditions. Skin wettedness, ambient humidity, wind and solar heat showed significant effects on evaporative heat transfer. These effects were different for the different helmets.  相似文献   

2.
Heat loss of 27 full-face motorcycle helmets was studied using a thermal manikin headform. The headform was electrically heated and positioned at the exit of a wind tunnel, so that the air stream flowed onto its front side. All helmets were measured in three sessions in which all the vents were opened or closed consecutively in random order. Average heat loss was calculated from a steady state period, under controlled environmental conditions of 22±0.05 °C, 50±1% RH and 50.4±1.1 km h−1 (14.0±0.3 m s−1) wind speed. The results show large variations in heat loss among the different helmets, ranging from 0 to 4 W for the scalp section of the headform and 8 to 18 W for the face section of the headform. Opening all the vents showed an increase in heat loss of more than 1 W (2 W) for four (two) helmets in the scalp section and six (one) helmets in the face section. These levels of heat transfer have been shown to be the thresholds for human sensitivity in scalp and face sections. Furthermore, helmet construction features which could be identified as important for heat loss of motorcycle helmets were identified.  相似文献   

3.
The purpose of this study was to evaluate physiological and subjective responses while wearing the Shikoro-type helmet for firefighters when compared to typical helmets. Eight firefighters conducted a 30-min exercise at a 5 km h?1 in three helmet conditions at an air temperature of 32 °C with 70%RH. The results showed that no significant differences in rectal, mean skin temperature and physiological strain index among the three conditions were found during exercise and recovery. Skin temperatures on the cheek, ear and neck during exercise were significantly lower for the Shikoro-type condition (p < 0.05), but forehead temperature was greater for the Shikoro-type helmet when compared to the other conditions (p < 0.05). Statistical differences in thermal sensation and thermal comfort for overall and local body regions were not found among the three conditions. These results imply that the Shikoro-type helmet had local advantages in reducing skin temperatures on the face and neck.

Practitioner Summary: Firefighters wear their helmet with its hood to protect the head and neck but a Shikoro type helmet has no fire protective hood. This study aimed to evaluate the comfort function of Shikoro helmet along with typical helmets. The results demonstrated thermal benefits of the Shikoro helmet on the head.  相似文献   

4.
Wearing helmets has reduced the risk of head and facial injury among cricketers. Yet, design gaps are present in the cricket helmets currently being used. The aim of this research was to identify the shortcomings and user requirements pertinent to safety and usability of cricket helmets. The objectives were to explore the design criteria and the drawbacks of state-of-the-art cricket helmets, to identify user requirements for design and to analyse them. To collect data, a three-faceted approach, i.e. a literature review (n = 58), a video-based accident analysis (n = 24) and a user study (n = 42), was used. A frequency analysis technique based on the constant comparative method was used to identify and prioritize the shortcomings and user requirements. Findings from the three approaches were then triangulated to confirm the shortcomings and user requirements. Results revealed that poor fit, inadequate impact attenuation capacity and thermal discomfort are the main categories of shortcomings in the cricket helmets. Research on multi-objective optimisation of features for better fit, impact attenuation and thermal comfort (FIT) is suggested as future work.  相似文献   

5.
The aim of the study was to examine the various design features of ventilated garments on cooling performance. Five jackets with small ventilation units and closable openings were designed. The ventilation units with a flow rate of 12 l/s were placed at five different torso sites. They were examined on a sweating thermal manikin in four clothing opening conditions in a warm environment (Ta = Tmanikin = 34 °C, RH = 60%, Va = 0.4 m/s). Total torso cooling was increased by 137–251%, and clothing total dynamic evaporative resistance was decreased by 43–69%. Neither the ventilation location nor the opening design had a significant difference on total torso cooling. The ventilation location had a significant difference on localized intra-torso cooling, but not the opening design. When the ventilation units were placed at the local zone where it was ventilated, that zone underwent the highest cooling than other local zones. The study indicated that the ventilation units should be placed at the region where it required the most evaporative cooling, e.g. along the spine area and the lower back. The openings could be adjusted (closed or opened) to make comfortable air pressure for the wearers but without making significant difference on the whole torso cooling under this flow rate.Relevance to industryHeat strain is frequently reported in hot environments, especially for those industries, such as construction, mining and steel. Clothing equipped with the small ventilation units could circulate the ambient air around the body and thus decrease heat strain and improve productivity.  相似文献   

6.
The authors offer a new design in support of efficient heat dissipation for light emitting diodes (LEDs). In the first part of this paper we discuss improvements in LED packaging materials and layer assembly, and then describe the addition of a thin layer of electroplated copper to the LED base assembly to reduce thermal resistance and increase thermal diffusion efficiency. Also described is a three-dimensional finite element simulation that we performed to verify the proposed design (0.75, 1, and 3 W LED chip temperatures) and a LED heat transfer behavior analysis. The results indicate that the addition of a 9 mm2 electroplated copper layer to the LED base assembly improved LED thermal dissipation by reducing chip temperature by 5°C compared to LEDs without the copper layer packaging. In the second part of this paper we describe (a) our heat pipe system/heat sink design for LED illumination, and (b) experiments in which we changed both working fluid mass and rotation angle to determine their effects on heat pipe cooling. Our results indicate that the most efficient heat dissipation occurred when an added heat pipe was arranged horizontally. Good heat dissipation was observed for heat pipes containing 2.52 g of water (temperature reduced by 50°C). Larger water volumes failed to dissipate additional heat due to the presence of steam inside the pipe.  相似文献   

7.
Zhiying Cui  Yuenshing Wu 《Ergonomics》2016,59(8):999-1008
This paper reports on an experimental investigation on the effects of air gap, wind and walking motion on the thermal properties of traditional Arabian thawbs and Chinese cheongsams. Total thermal resistance (It) and vapour resistance (Re) were measured using the sweating fabric manikin – ‘Walter’, and the air gap volumes of the garments were determined by a 3D body scanner. The results showed the relative changes of It and Re of thawbs due to wind and walking motion are greater than those of cheongsams, which provided an explanation of why thawbs are preferred in extremely hot climate. It is further shown that thermal insulation and vapour resistance of thawbs increase with the air gap volume up to about 71,000 cm3 and then decrease gradually. Thawbs with higher air permeability have significantly lower evaporative resistance particularly under windy conditions demonstrating the advantage of air permeable fabrics in body cooling in hot environments.

Practitioner Summary: This paper aims to better understand the thermal insulation and vapour resistance of traditional Arabian thawbs and Chinese cheongsams, and the relationship between the thermal properties and their fit and design. The results of this study provide a scientific basis for designing ethnic clothing used in hot environments.  相似文献   


8.
Predicting thermal comfort of protective headgear is of particular interest since the head is one of the most heat-sensitive body parts. Thermal head manikins enable systematic investigation of heat transfer properties of headgear. Such investigation provides valuable inputs for the development of new helmet concepts to improve thermal comfort.This study presents a nine-zone thermal head manikin (9zM) to evaluate local heat transfer effects of headgear. Performance of the new manikin and local data were assessed by comparing with data from a two-zone thermal head manikin (2zM) published previously. Variation for heat flux data was found to be lower for 9zM than for 2zM in tests including convective and radiative heat transfer. The calculation of radiant heat gain revealed similar variation at cranial section for both manikins but it increased at facial section for 9zM. Classification of helmets based on heat transfer data differed for head manikins likely due to slight differences in head geometries. Moreover, local heat transfer data obtained from the 9zM allowed a more detailed investigation of headgear properties. This knowledge contributes to a better understanding of the thermal interaction of head and headgear and, therefore, to a more justified development of optimised headgear designs.  相似文献   

9.
《Ergonomics》2012,55(8):1461-1469
Heat stress caused by protective clothing limits work time. Performance improvement of a microclimate cooling method that enhances evaporative and to a minor extent convective heat loss was tested. Ten male volunteers in protective overalls completed a work-rest schedule (130 min; treadmill: 3 × 30 min, 3 km/h, 5% incline) with or without an additional air-diffusing garment (climatic chamber: 25°C, 50% RH, 0.2 m/s wind). Heat loss was supported by ventilating the garment with dry air (600 l/min, ?5% RH, 25°C). Ventilation leads (M ± SD, n = 10, ventilated vs. non-ventilated) to substantial strain reduction (max. HR: 123 ± 12 b/min vs. 149 ± 24 b/min) by thermal relief (max. core temperature: 37.8 ± 0.3°C vs. 38.4 ± 0.4°C, max. mean skin temperature: 34.7 ± 0.8°C vs. 37.1 ± 0.3°C) and offers essential extensions in performance and work time under thermal insulation.  相似文献   

10.
The present study looked at the effect of a helmet on cognitive performance under demanding conditions, so that small effects would become more detectible. Nineteen participants underwent 30 min of continuous visual vigilance, tracking, and auditory vigilance (VTT + AVT), while seated in a warm environment (27.2 (±0.6) °C, humidity 41 (±1)%, and 0.5 (±0.1) m s−1 wind speed). The participants wore a helmet in one session and no helmet in the other, in random order. Comfort and temperature perception were measured at the end of each session. Helmet-wearing was associated with reduced comfort (p = 0.001) and increased temperature perception (p < 0.001), compared to not wearing a helmet. Just one out of nine cognitive parameters showed a significant effect of helmet-wearing (p = .032), disappearing in a post-hoc comparison. These results resolve previous disparate studies to suggest that, although helmets can be uncomfortable, any effect of wearing a helmet on cognitive performance is at worst marginal.  相似文献   

11.
3D anthropometry has provided much-needed information about the size and shape of the head, which can be used to improve the fit of protective helmets. In this study, a new 3D head scan sizing method was implemented in a reverse engineering approach for bicycle helmet liner dimensioning. The inside liner of a commercially available helmet was modified to improve the fit for a selected size group of 30 participants. The fit of the standard and new liner were assessed and compared, using the Helmet Fit Index (HFI). The HFI scores showed a significant improvement of overall fit (Difference: 11.32 ± 7.82 (μ ± SD), p < 0.0005) and for each of five defined regions of the liner inside surface. The presented methodology for dimensioning helmet liners based on 3D anthropometry proved effective, resulting in improved fit for the end users.  相似文献   

12.
《Ergonomics》2012,55(8):780-799
Heat stress can be a significant problem for pilots wearing protective clothing during flights, because they provide extra insulation which prevents evaporative heat loss. Heat stress can influence human cognitive activity, which might be critical in the flying situation, requiring efficient and error-free performance. This study investigated the effect of wearing protective clothing under various ambient conditions on physiological and cognitive performance. On several occasions, eight subjects were exposed for 3 h to three different environmental conditions; 0°C at 80% RH, 23°C at 63% RH and 40°C at 19% RH. The subjects were equipped with thermistors, dressed as they normally do for flights (including helmet, two layers of underwear and an uninsulated survival suit). During three separate exposures the subjects carried out two cognitive performance tests (Vigilance test and DG test). Performance was scored as correct, incorrect, missed reaction and reaction time. Skin temperature, deep body temperature, heart rate, oxygen consumption, temperature and humidity inside the clothing, sweat loss, subjective sensation of temperature and thermal comfort were measured. Rises in rectal temperature, skin temperature, heart rate and body water loss indicated a high level of heat stress in the 40°C ambient temperature condition in comparison with 0°C and 23°C. Performance of the DG test was unaffected by ambient temperature. However, the number of incorrect reactions in the Vigilance test was significantly higher at 40°C than at 23°C (p = 0.006) or 0°C (p = 0.03). The effect on Vigilance performance correlated with changes in deep-body temperature, and this is in accordance with earlier studies that have demonstrated that cognitive performance is virtually unaffected unless environmental conditions are sufficient to change deep body temperature.  相似文献   

13.
《Ergonomics》2012,55(11):1665-1671
Abstract

Elite cricketers believe that the use of helmets may help to reduce anxiety when facing fast bowling although they risk visual impairment in time-stressed circumstances. This study aimed to determine the effects of helmet design and bowling speed on heart rate (HR), anxiety arid batting performance.

Elite batsman (n=12) faced 20 deliveries from a bowling machine at slow (21 m s?1) and fast (42ms?1 ) speeds under three different headgear conditions— helmet with bars, visorless helmet and no-helmet. State measures of anxiety were taken before and after each batting condition by questionnaire. Heart rate (HR) was monitored throughout the test session. Batting performance was filmed and rated for quality by expert coaches on the basis of bat contact, foot movement, element of attack and timing.

Repeated measures analysis of variance revealed no significant differences in HR or performance between helmet conditions. Batting performance was significantly better against slow bowling than fast (p<0·01) and no significant differences were found for HR between the bowling speeds. No significant correlations were found between HR, performance and state anxiety scores but there was a significant negative relationship between perceived quality of performance and post-batting A-state (r= ?0·62; p<0·05) in the barred helmet condition only.

It is concluded that elite cricketers experienced little change in the level of performance-related anxiety when wearing helmets of varying designs, even when faced with bowling of considerable speed. There was no evidence of performance decrements when wearing helmets with bars and visors which suggests that the use of maximum protection against the possibility of facial damage does not seriously affect the batsman's ability to track and play the ball.  相似文献   

14.
We have fabricated microthruster chip pairs—one chip with microthruster structures such as injection capillaries, combustion chamber and converging/diverging nozzle machined using the deep reactive ion etching process, the other chip with sputtered platinum (Pt) thin film devices such as resistance temperature detectors (RTDs) and a heater. To our knowledge, this is the first microelectromechanical systems-based microthruster with fully integrated temperature sensors. The effects of anneal up to 1,050°C on the surface morphology of Pt thin films with varied geometry as well as with/without PECVD-SiO2 coating were investigated in air and N2 and results will also be presented. It was observed that by reducing the lateral scale of thin films the morphology change can be suppressed and their adhesion on the substrate can be enhanced. Chemical analysis with X-ray photoelectron spectroscopy showed that no diffusion took place between neighboring layers during annealing up to 1?h at 1,050°C in air. Electrical characterization of sensors was carried out between room temperature and 1,000°C with a ramp of ±5?Kmin?1 in air and N2. In N2, the temperature-resistance characteristics of sensors had stabilized to a large extent after the first heating. After stabilization the sensors underwent up to eight further temperature cycles. The maximum drift of the sensor signal was observed for temperatures above 950°C and was less than 8.5?K in N2. To reduce the loss of combustion heat, chip material around microthruster structures was partially removed with laser ablation. The effects of thermal insulation were investigated with microthruster chip pairs which were clamped together mechanically. The heater was operated with up to 20?W and the temperature distribution in the chip pairs with/without thermal insulation was monitored with seven integrated RTDs. The experiments showed that a thermal insulation allows the maximum temperature as well as the temperature gradient within the microthruster chip pairs to be increased.  相似文献   

15.
Gas sensing characteristics of WO3 powder and its physical properties under different heat treatment conditions have been investigated. The WO3 powder was synthesized by wet process from ammonium tungstate parapentahydrate and nitric solution. The precipitated product was then calcined at 300–800 °C for 2–12 h. The physical properties of the products were characterized by using X-ray diffractometer (XRD), scanning electron microscope (SEM), and BET method. It was found that the crystallite size, particle size and surface area of the WO3 powders were in the range of 30–45 nm, 0.1–3.0 μm and 1.2–3.7 m2/g, respectively. Calcination at higher temperature and longer time led to the increase of particle size by more than 300%, and reduction in specific surface area by more than 60%. However, the crystallite size was found to increase only by ∼30% under identical heat treatment. These results inferred that such heat treatment had more profound effect on crystallite aggregation than on crystallite growth. Gas sensing measurement showed that the largest change of output voltage to both ethyl alcohol and ammonia was obtained from the sensor calcined at 600 °C for 2 h, which had the highest surface area. However, the highest sensitivity which is defined as the ratio of sensor's resistance in air to that in the sample gas, Rair/Rgas, was obtained from the sensor calcined at 600 °C for 6 h due to its highest background resistance in air. Moreover, it was also found that the sensors were less sensitive to the oxygen content in the carrier gas and did not sensitive at all to water vapor.  相似文献   

16.

The aim of this study was to design and fabricate heat sinks with high heat dissipation capacity by using selective laser melting (SLM). A low junction temperature was maintained and the lifetime and reliability of the resultant compact LED recessed downlight (CLDL) was increased. A trapezoidal-finned heat sink with horizontal holes (HFSLM) and three-dimensional metal-foam-like heat sink (3DSLM), which both have large surface-area-to-volume ratios, were designed in this study. Each heat sink was mounted to a 10 W CLDL and installed in a test box with the dimensions 105 mm × 105 mm × 100 mm (L × W × H) for evaluating the lifespan of the CLDL in a high-temperature environment with natural convection. The downlights withstood the test, and according to the Arrhenius equation, they had a long lifetime at normal usage temperatures. The results of the stationary simulations agreed with the experimental results. The temperatures at the solder point of the CLDL with the HFSLM and 3DSLM were 88.6 and 91.4 °C, respectively, corresponding to LED junction temperatures of 118.6 and 121.4 °C. These junction temperatures were lower than the specified LED limit temperature of 135 °C. The results of an accelerated life test prediction and in situ temperature measurement testing based on TM-21 extrapolations using LM-80 data indicated that the lumen maintenance of the CLDLs complied with Energy Star® requirements.

  相似文献   

17.
《Ergonomics》2012,55(5):716-723
Phase change material (PCM) absorbs or releases latent heat when it changes phases, making thermal-regulated clothing possible. The objective of this study was to quantify the relationships between PCM cooling rate and temperature gradient, mass and covering area on a thermal manikin in a climatic chamber. Three melting temperatures (24, 28, 32°C) of the PCMs, different mass, covering areas and two manikin temperatures (34 and 38°C) were used. The results showed that the cooling rate of the PCM vests tested is positively correlated with the temperature gradient between the thermal manikin and the melting temperature of the PCMs. The required temperature gradient is suggested to be greater than 6°C when PCM vests are used in hot climates. With the same temperature gradient, the cooling rate is mainly determined by the covering area. The duration of the cooling effect is dependent on PCM mass and the latent heat.

Statement of Relevance: The study of factors affecting the cooling rate of personal cooling equipment incorporated with PCM helps to understand cooling mechanisms. The results suggest climatic conditions, the required temperature gradient, PCM mass and covering area should be taken into account when choosing personal PCM cooling equipment.  相似文献   

18.
《Ergonomics》2012,55(1):166-182
The high level of protection required by protective clothing (PPC) severely impedes heat exchange by sweat evaporation. As a result work associated with wearing PPC, particularly in hot environments, implies considerable physiological strain and may render workers exhausted in a short time. Current methods of describing evaporative heat exchange with PPC are insufficient, will overestimate evaporative heat loss and should not be recommended. More reliable measures of the resistance to evaporative heat transfer by PPC should be developed and standardized. Direct measurements of evaporative resistance of PPC may be carried. However, a more promising method appears to be the definition of evaporative resistance on the basis of the i cl-index for the fabric layers. The i cl-mdex is a permeation efficiency ratio, which in combination with clothing insulation determines the evaporative heat transfer. Current methods should be further developed to account for effects of moisture condensation and microclimate ventilation.  相似文献   

19.
This paper presents an approach for generating a well-defined cooling pattern over an area of tissue. An array of solid-state microcoolers is used, which could be included in a probe that provides local cooling. This medical instrument can be used for removal of scar tissue in the eye or for the rapid stopping of bleeding due to micro-cuts, which makes it a useful tool to medical doctors and could make surgery more secure to the patient. The array of microcoolers is composed of 64 independent thermo-electric elements, each controlled using an integrated circuit designed in CMOS. The independent control allows the flexible programming of the surface temperature profile. This type of control is very suitable in case abrupt temperature steps should be avoided. Cooling by lateral heat flow was selected in order to minimize the influence of heat by dissipation from the electronic circuits. Moreover, a thermo-electric component with lateral heat allows fabrication of the cooling elements using planar thin-film technology, lithography and wet etching on top of the silicon wafer. This approach is potentially CMOS compatible, which would allow for the fabrication of the thermo-electric elements on top of a pre-fabricated CMOS wafer as a post-process step. Each pixel is composed of thin-films of n-type bismuth telluride, Bi2Te3 and p-type antimony telluride, Sb2Te3, which are electrically interconnected as thermocouple. These materials have excellent thermoelectric characteristics, such as thermoelectric figures-of-merit, ZT, at room temperatures of 0.84 and 0.5, respectively, which is equivalent to power-factors, PF, of 3.62 × 10−3 W K−1 m−2 and 2.81 × 10−3 W K−1 m−2, respectively. The theoretical study presented here demonstrates a cooling capability of 15°C at room temperature (300 K ≈ 27°C). This cooling performance is sufficient to maintain a local tissue temperature at 25°C, which makes it suitable for the intended application. A first prototype was successfully fabricated to demonstrate the concept.  相似文献   

20.
This paper presents a design and fabrication of bi-material micro-cantilever array (focal plane array, FPA) made of silicon nitride (SiNx) and gold (Au) for uncooled optical readout infrared (IR) imaging system, in which silicon (Si) substrate is removed. Compared with the conventional thermal imaging detectors where the FPA must be put in high vacuum, IR thermal images can be obtained even though the cantilever array is placed in the atmosphere. The reason is the elimination of air gap (∼2 μm) between the cantilever beam and substrate, which introduces the air conduction of high temperature gradient. The preliminary experimental results with the micro-cantilever array of 140 × 98 elements and a 12-bit charge-coupled device (CCD) indicate that objects at temperature of higher than 120 °C can be detected and the noise-equivalent temperature difference (NETD) is ∼7 K. Also, the experimental results are well accordant with the thermomechanical analysis of designed micro-cantilever array.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号