首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
This paper investigates improved delay-range-dependent robust absolute stability criteria for a class of Lur׳e uncertain systems with interval time-varying delays. By using delayed decomposition approach (DDA), a tighter upper bound of the derivative of Lyapunov functional can be obtained, and thus the proposed criteria give results with less conservatism compared with some previous ones. An integral inequality approach (IIA) is proposed to reduce the conservativeness in computing the allowable maximum admissible upper bound (MAUB) of the time-delay. The developed stability condition is expressed in terms of linear matrix inequality (LMI) that manipulates fewer decision variables and requires reduced computational load. Finally, three numerical examples are given to show the effectiveness of the proposed stability criteria.  相似文献   

2.
This paper investigates a class of delayed cellular neural networks (DCNN) with time-varying delay. Based on the Lyapunov–Krasovski functional and integral inequality approach (IIA), a uniformly asymptotic stability criterion in terms of only one simple linear matrix inequality (LMI) is addressed, which guarantees stability for such time-varying delay systems. This LMI can be easily solved by convex optimization techniques. Unlike previous methods, the upper bound of the delay derivative is taken into consideration, even if larger than or equal to 1. It is proven that results obtained are less conservative than existing ones. Four numerical examples illustrate efficacy of the proposed methods.  相似文献   

3.
In this paper, we consider the problem of delay-interval-dependent robust stability and stabilization of a class of linear uncertain neutral-type systems with time-varying delay. By constructing a candidate Lyapunov–Krasovskii functional (LKF), that takes into account the delay-range information appropriately, less conservative robust stability criteria are proposed in terms of linear matrix inequalities (LMIs) to compute the maximum allowable upper bounds (MAUB) for the delay-interval within which the uncertain neutral-type system under consideration remains asymptotically stable. The verifiable stabilizability conditions and memoryless state feedback control design are stated. Finally, numerical examples are also designated to demonstrate the effectiveness and reduced conservatism of the developed results.  相似文献   

4.
This paper considers the problem of delay-fractional-dependent stability analysis of linear systems with interval time-varying state delay. By developing a delay variable decomposition approach, both the information of the variable dividing subinterval delay, and the information of the lower and upper bound of delay can be taken into full consideration. Then a new delay-fractional-dependent stability criterion is derived without involving any direct approximation in the time-derivative of the Lyapunov–Krasovskii (LK) functional via some suitable Jensen integral inequalities and convex combination technique. The merits of the proposed result lie in less conservatism, which are realized by choosing different Lyapunov matrices in the variable delay subintervals and estimating the upper bound of some cross term in LK functional more exactly. At last, two well-known numerical examples are employed to show the effectiveness and less conservatism of the proposed method.  相似文献   

5.
This paper mainly focuses on the robust stability criteria for uncertain T–S fuzzy systems with time-varying delay by (m,N)-delay-partitioning approach. A modified augmented LKF is established by partitioning the delay in all integral terms. Via taking into account of (i) the relationship between each subinterval and time-varying delay and (ii) the independent upper bounds of the delay derivative in the various delay intervals, some new results on tighter bounding inequalities such as Peng-Park׳s integral inequality and Free-Matrix-based integral inequality are introduced to effectively reduce the enlargement in bounding the derivative of LKF as much as possible, therefore, significant less conservative results can be expected in terms of es and LMIs, which can be solved efficiently with the Matlab LMI toolbox. Furthermore, it is worth mentioning that, when the delay-partitioning number m is fixed, the conservatism is gradually reduced with the increase of another delay-partitioning number N, but without increasing any computing burden. Finally, two numerical examples are included to show that the proposed method is less conservative than existing ones.  相似文献   

6.
This paper focuses on further improved stability criteria for uncertain T–S fuzzy systems with interval time-varying delay by a delay-partitioning approach. A modified augmented Lyapunov–Krasovskii functional (LKF) is established by partitioning the delay in all integral terms. Then some tighter bounding inequalities, i.e., Peng–Park׳s integral inequality (reciprocally convex approach) and the Free-Matrix-Based integral inequality (which yields less conservative stability criteria than the use of Wirtinger-based inequality does) are introduced to reduce the enlargement in bounding the derivative of LKF as much as possible, therefore, less conservative results can be expected in terms of es and LMIs. Finally, a numerical example is included to show that the proposed methods are less conservative than existing ones.  相似文献   

7.
In this paper, new conditions for the delay-range-dependent stability analysis of time-varying delay systems are proposed in a Lyapunov–Krasovskii framework. Time delay is considered to be time-varying and has lower and upper bounds. A new method is first presented for a system with two time delays, integral inequality approach (IIA) used to express relationships among terms of Leibniz–Newton formula. Constructing a novel Lyapunov–Krasovskii functional includes information belonging to a given range; new delay-range-dependent criterion is established in term of linear matrix inequality (LMI). The advantage of that criterion lies in its simplicity and less conservative. This paper also presents a new result of stability analysis for continuous systems with two additive time-variant components representing a general class of delay with strong application background in network-based control systems. Resulting criteria are then expressed in terms of convex optimization with LMI constraints, allowing for use of efficient solvers. Finally, three numerical examples show these methods reducing conservatism and improving maximal allowable delay.  相似文献   

8.
This paper is concerned with the delay dependent stability criteria for a class of static recurrent neural networks with interval time-varying delay. By choosing an appropriate Lyapunov–Krasovskii functional and employing a delay partitioning method, the less conservative condition is obtained. Furthermore, the LMIs-based condition depend on the lower and upper bounds of time delay. Finally, a numerical example is also designated to verify the reduced conservatism of developed criteria.  相似文献   

9.
This paper provides an improved delay-range-dependent stability criterion for linear systems with interval time-varying delays. No model transformation and no slack matrix variable are introduced. Furthermore, overly bounding for some cross term is avoided. The resulting criterion has advantages over some previous ones in that it involves fewer matrix variables but has less conservatism, which is established theoretically. Finally, two numerical examples are given to show the effectiveness of the proposed results.  相似文献   

10.
This study investigates the delay-dependent robust absolute stability analysis for uncertain Lurie systems with interval time-varying delays of neutral type. First, we divide the whole delay interval into two segmentations with an unequal width and checking the variation of the Lyapunov–Krasovskii functional (LKF) for each subinterval of delay, much less conservative delay-dependent absolute and robust stability criteria are derived. Second, a new delay-dependent robust stability condition for uncertain Lurie neutral systems with interval time-varying delays, which expressed in terms of quadratic forms of linear matrix inequalities (LMIs), and has been derived by constructing the LKF from the delayed decomposition approach (DDA) and integral inequality approach (IIA). Finally, three numerical examples are given to show the effectiveness of the proposed stability criteria.  相似文献   

11.
This paper studies the problem of the stability analysis of interval time-varying delay systems with nonlinear perturbations. Based on the Lyapunov–Krasovskii functional (LKF), a sufficient delay-range-dependent criterion for asymptotic stability is derived in terms of linear matrix inequality (LMI) and integral inequality approach (IIA) and delayed decomposition approach (DDA). Further, the delay range is divided into two equal segments for stability analysis. Both theoretical and numerical comparisons have been provided to show the effectiveness and efficiency of the present method. Two well-known examples are given to show less conservatism of our obtained results and the effectiveness of the proposed method.  相似文献   

12.
This paper studies the asymptotic stability for a class of neutral systems with mixed time-varying delays. Through utilizing some Wirtinger-based integral inequalities and extending the convex combination technique, the upper bound on derivative of Lyapunov-Krasovskii (L-K) functional can be estimated more tightly and three mixed-delay-dependent criteria are proposed in terms of linear matrix inequalities (LMIs), in which the nonlinearity and parameter uncertainties are also involved, respectively. Different from those existent works, based on the interconnected relationship between neutral delay and state one, some novel triple integral functional terms are constructed and the conservatism can be effectively reduced. Finally, two numerical examples are given to show the benefits of the proposed criteria.  相似文献   

13.
This paper is concerned with the problem of improved delay-dependent robust stability criteria for neutral-type recurrent neural networks (NRNNs) with time-varying delays. Combining the Lyapunov–Krasovskii functional with linear matrix inequality (LMI) techniques and integral inequality approach (IIA), delay-dependent robust stability conditions for RNNs with time-varying delay, expressed in terms of quadratic forms of state and LMI, are derived. The proposed methods contain the least number of computed variables while maintaining the effectiveness of the robust stability conditions. Both theoretical and numerical comparisons have been provided to show the effectiveness and efficiency of the present method. Numerical examples are included to show that the proposed method is effective and can provide less conservative results.  相似文献   

14.
This paper investigates the asymptotical stability problem for a class of neutral type neural networks with mixed time-varying delays. The system not only has time-varying discrete delay, but also distributed delay, which has never been discussed in the previous literature. Firstly, improved stability criteria are derived by employing the more general delay partitioning approach and generalizing the famous Jensen inequality. Secondly, by constructing a newly augmented Lyapunov–Krasovskii functionals, some less conservative stability criteria are established in terms of linear matrix inequalities (LMIs). Finally, four numerical examples are given to illustrate the effectiveness and the advantage of the proposed main results.  相似文献   

15.
This paper focuses on stability analysis and stabilization of nonlinear systems with interval time-varying delay, modeled by Takagi-Sugeno (T-S) fuzzy approach. To achieve more relaxation in the feasibility region, delay-partitioning approach is used for all integral terms in the Lyapunov-Krasovskii functional (LKF). A fuzzy Lyapunov function is proposed instead of non-integral term in LKF, and moreover, some slack matrices variables are offered to enlarge the design space. By doing this, new delay-dependent stability criteria are obtained. During the derivation of stability conditions, Jensen’s integral inequality is applied to deal with integral terms. Furthermore, in this paper the problem of controller design via the parallel distributed compensation (PDC) scheme is studied. Stability and stabilization conditions with less conservative are achieved in terms of linear matrix inequality (LMI). Finally, two numerical examples are presented to show the effectiveness of the proposed results.  相似文献   

16.
The paper considers the stabilization for systems with interval time-varying delay. By decomposing the delay interval into multiple equidistant subintervals and considering the triple integral terms, a novel Lyapunov-krasovskii functional(LKF) is defined. Then extended integral inequality and convex combination approach are used to estimate the derivative of the constructed functional, and as a result, the new stability criterion with less conservatism and decision variables is obtained. On this basis, the state feedback controller is designed, by using linearization method, the existence condition of controller is obtained in terms of linear matrix inequalities(LMIs), and the specific form of controller is also given, moreover, by selecting the appropriate parameter value, the stabilization time of the system can be reduced. Numerical examples are given to illustrate the effectiveness of the proposed method.  相似文献   

17.
In this paper, the problem of delay-dependent asymptotic stability analysis for neural networks with time-varying delays is considered. A new class of Lyapunov functional is proposed by considering the information of neuron activation functions adequately. By using the delay-partitioning method and the reciprocally convex technique, some less conservative stability criteria are obtained in terms of linear matrix inequalities (LMIs). Finally, two numerical examples are given to illustrate the effectiveness of the derived method.  相似文献   

18.
This paper investigates the stability and stabilization problems for interval time-delay systems. By introducing a new delay partitioning approach, various Lyapunov-Krasovskii functionals with triple-integral terms are established to make full use of system information. In order to reduce the conservatism, improved integral inequalities are developed for estimation of double integrals, which show remarkable outperformance over the Jensen and Wirtinger ones. Particularly, the relationship between the time-delay and each subinterval is taken into consideration. The resulting stability criteria are less conservative than some recent methods. Based on the derived condition, the state-feedback controller design approach is also given. Finally, the numerical examples and the application to inverted pendulum system are provided to illustrate the effectiveness of the proposed approaches.  相似文献   

19.
This paper is concerned with a new Lyapunov-Krasovskii functional (LKF) approach to the stability for neural networks with time-varying delays. The LKF has two features: First, it can make full use of the information of the activation function. Second, it employs the information of the maximal delayed state as well as the instant state and the delayed state. When estimating the derivative of the LKF we employ a new technique that has two characteristics: One is that Wirtinger-based integral inequality and an extended reciprocally convex inequality are jointly employed; the other is that the information of the activation function is used as much as we can. Based on Lyapunov stability theory, a new stability result is obtained. Finally, three examples are given to illustrate the stability result is less conservative than some recently reported ones.  相似文献   

20.
In this paper, the problem of finite-time stability for discrete-time system with time-varying delay and nonlinear perturbations is investigated. By constructing a novel Lyapunov–Krasovskii functional and employing a new summation inequality named discrete Wirtinger-based inequality, reciprocally convex approach and zero equality, the improved finite-time stability criteria are derived to guarantee that the state of the system with time-varying delay does not exceed a given threshold when fixed time interval. Furthermore, the obtained conditions are formulated in forms of linear matrix inequalities which can be solved by using some standard numerical packages. Finally, three numerical examples are given to show the effectiveness and less conservatism of the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号