首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Microelectronics Journal》2015,46(1):103-110
In order to get a wideband and flat gain, a resistive-feedback LNA using a gate inductor to extend bandwidth is proposed in this paper. This LNA is based on an improved resistive-feedback topology with a source follower feedback to match input. A relative small inductor is connected in series to transistor׳s gate, which boosts transistor׳s effective transconductance, compensates gain loss and then leads the proposed LNA with a flat gain and wider bandwidth. Moreover, the LNA׳s noise is partially inhibited by the gate inductor, especially at high frequency. Realized in standard 65-nm CMOS process, this LNA dissipates 12 mW from a 1.5-V supply while its core area is 0.076 mm2. Across 0.4–10.6 GHz band, the proposed LNA provides 9.5±0.9 dB power gain (S21), better than −11-dB input matching, 3.5-dB minimum noise figure, and higher than −17.2-dBm P1 dB.  相似文献   

2.
This paper presents an ultra-wideband low noise amplifier design using the dual-resonant broadband matching technique. The proposed LNA achieves a 10.2 dB gain with ±0.9 dB gain flatness over a frequency range of 3.1–10.6 GHz and a ?3-dB bandwidth of 2.4–11.6 GHz. The measured noise figure ranges from 3.2 to 4.7 dB over 3.1–10.6 GHz. At 6.5 GHz, the measured IIP3 and input-referred P1dB are +6 dBm and ?5 dBm, respectively. The proposed LNA occupies an active chip area of 0.56 mm2 in a TSMC 0.18 μm RF-CMOS process and consumes 16 mW from a 1.8 V supply.  相似文献   

3.
This paper presents an Ultra Wide-Band (UWB) high linear low noise amplifier. The linearity of Common Gate (CG) structure is improved based on pre-distortion technique. An auxiliary transistor is used at the input to sink the nonlinear terms of source current, resulting linearity improvement. Furthermore, an inductor is used in the gate of the main amplifying transistor, which efficiently improves gain, input matching and noise performance at higher frequencies. Detailed mathematical analysis show the effectiveness of both linearity improvement and bandwidth extension techniques. Post-layout simulation results of the proposed LNA in TSMC 0.18 µm RF-CMOS process show a gain of 13.7 dB with −3 dB bandwidth of 0.8–10.4 GHz and minimum noise figure (NF) of 3 dB. Input Third Intercept Point (IIP3) of 10.3–13 dBm is achieved which shows 8 dB improvement compared to conventional common gate structure. The core circuit occupies an area of 0.19 mm2 including bond pads, while consuming 4 mA from a 1.8-V supply.  相似文献   

4.
A wideband common-gate (CG) low-noise amplifier (LNA) with dual capacitor cross-coupled (CCC) feedback and negative impedance techniques is presented for multimode multiband wireless communication applications. Double CCC technique boosts the input transconductance of the LNA, and low power consumption is obtained by using current-reuse technique. Negative impedance technique is employed to alleviate the correlation between the transconductance of the matching transistors and input impedance. Meanwhile, it also allows us to achieve a lower noise figure (NF). Moreover, current bleeding technique is adopted to allow the choice of a larger load resistor without sacrificing the voltage headroom. The proposed architecture achieves low noise, low power and high gain simultaneously without the use of bulky inductors. Simulation results of a 0.18-μm CMOS implementation show that the proposed LNA provides a maximum voltage gain of 25.02 dB and a minimum NF of 2.37 dB from 0.1 to 2.25 GHz. The input-referred third-order intercept point (IIP3) and input 1-dB compression point (IP1dB) are better than –7.8 dBm and –19.2 dBm, respectively, across the operating bandwidth. The circuit dissipates 3.24 mW from 1.8 V DC supply with an active area of 0.03 mm2.  相似文献   

5.
This paper presents a comparative study among different biasing circuits of inductorless low-area Low Noise Amplifier (LNAs) with feedback. This study intends to determine the most suitable biasing circuit to achieve the best LNA performance for wideband applications. The main performance metrics are analyzed and a comparison is carried out based on electrical simulations. To this purpose, two different CMOS technology processes are considered: 130 nm and 90 nm. In both cases, the supply voltage is 1.2 V. The best LNA designed in 130 nm achieves a bandwidth of 2.94 GHz with a flat voltage gain (Av) of 16.5 dB and a power consumption of 3.2 mW. The same LNA topology designed in 90 nm technology has a bandwidth of 11.2 GHz, featuring a voltage gain of 16.6 dB and consuming 1.9 mW. Both LNAs are input-impedance matched and have a noise figure below 2.4 dB measured at 2.4 GHz. As a case study, the layout of the best-performance LNA circuit has been implemented in a 130 nm technology, achieving an area of 0.012 mm2, which is near the size of a pad or an inductor. It is demonstrated that the bandwidth of this circuit can be notably increased by simply adding a small inductance in the feedback path.1  相似文献   

6.
This paper presents a Sub-mW differential Common-Gate Low Noise Amplifier (CGLNA) for ZigBee standard. The circuit takes the advantage of shunt feedback and Dual Capacitive Cross Coupling (DCCC) to reduce power consumption and the bandwidth extension capacitors to support 2.4 GHz ISM band. An amplifier employing these techniques has been designed and simulated in 0.18 µm TSMC CMOS technology. The Simulation results show a gain of 18.2 dB, an IIP3 of −4.32 dBm and a noise figure of 3.38 dB at 2.4 GHz. The proposed LNA consumes only 967 µW from a 1-V supply.  相似文献   

7.
《Microelectronics Journal》2015,46(2):198-206
In this paper, a highly linear CMOS low noise amplifier (LNA) for ultra-wideband applications is presented. The proposed LNA improves both input second- and third-order intercept points (IIP2 and IIP3) by canceling the common-mode part of all intermodulation components from the output current. The proposed LNA structure creates equal common-mode currents with the opposite sign by cascading two differential pairs with a cross-connected output. These currents eliminate each other at the output and improve the linearity. Also, the proposed LNA improves the noise performance by canceling the thermal noise of the input and auxiliary transistors at the output. Detailed analysis is provided to show the effectiveness of the proposed LNA structure. Post-layout circuit level simulation results using a 90 nm RF CMOS process with Spectre-RF reveal 9.5 dB power gain, -3 dB bandwidth (BW−3dB) of 8 GHz from 2.4 GHz to 10.4 GHz, and mean IIP3 and IIP2 of +13.1 dBm and +42.8 dBm, respectively. The simulated S11 is less than −11 dB in whole frequency range while the LNA consumes 14.8 mW from a single 1.2 V power supply.  相似文献   

8.
A low power cascode SiGe BiCMOS low noise amplifier (LNA) with current reuse and zero-pole cancellation is presented for ultra-wideband (UWB) application. The LNA is composed of cascode input stage and common emitter (CE) output stage with dual loop feedbacks. The novel cascode-CE current reuse topology replaces the traditional two stages topology so as to obtain low power consumption. The emitter degenerative inductor in input stage is adopted to achieve good input impedance matching and noise performance. The two poles are introduced by the emitter inductor, which will degrade the gain performance, are cancelled by the dual loop feedbacks of the resistance-inductor (RL) shunt–shunt feedback and resistance-capacitor (RC) series–series feedback in the output stage. Meanwhile, output impedance matching is also achieved. Based on TSMC 0.35 μm SiGe BiCMOS process, the topology and chip layout of the proposed LNA are designed and post-simulated. The LNA achieves the noise figure of 2.3–4.1 dB, gain of 18.9–20.2 dB, gain flatness of ±0.65 dB, input third order intercept point (IIP3) of ?7 dBm at 6 GHz, exhibits less than 16 ps of group delay variation, good input and output impedances matching, and unconditionally stable over the whole band. The power consumption is only 18 mW.  相似文献   

9.
《Microelectronics Journal》2015,46(7):626-631
A dual-band variable gain amplifier operating at 0.9 GHz and 2.4 GHz was designed based on high performance RF SiGe HBT for large amount of signals transmission and analysis. Current steering was adopted in gain-control circuit to get variable trans-conductance and then variable gain. Emitter degeneration and current reuse were considered in amplifying stage for low noise figure and low power dissipation respectively. A single-path circuit resonating at two frequency points simultaneously was designed for input impedance matching. PCB layout parasitic effects, especially the via parasitic inductor, were analyzed theoretically and experimentally and accounted for using electro-magnetic (EM) simulation. The measurement results show that a dynamic gain control of 26 dB/16 dB in a control voltage range of 0.0–1.4 V has been achieved at 0.9/2.4 GHz respectively. Both S11 and S22 are below than –10 dB in all the control voltage range. Noise figures at both 0.9 GHz and 2.4 GHz are lower than 5 dB. Total power dissipation of the dual-band VGA is about 16.5 mW at 3 V supply.  相似文献   

10.
《Microelectronics Journal》2015,46(8):698-705
A linearized ultra-wideband (UWB) CMOS Low Noise Amplifier (LNA) is presented in this paper. The linearity performance is enhanced by exploiting PMOS–NMOS common-gate (CG) inverter as a built-in linearizer which leads to cancel out both the second- and third-order distortions. Two inductors are placed at the drain terminals of CG transistors in the built-in linearizer to adjust the phase and magnitude of the third-order distortion. A second-order band-pass Chebyshev filter is utilized in the input port of common-source (CS) configuration to provide broadband input matching at 3.1–10.6 GHz frequency range to a 50-Ω antenna. Series and shunt peaking techniques are employed to extend the bandwidth (BW) and to flatten the gain response. Simulated in 0.13 µm CMOS technology, the CMOS LNA exhibits state of the art performance consuming 17.92 mW of dc power. The CMOS LNA features a maximum gain of 10.24 dB, 0.9–4.1 dB noise figure (NF), and a third-order input intercept point (IIP3) of 6.8 dBm at 6.3 GHz.  相似文献   

11.
A Ka-band four-stage self-biased monolithic low noise amplifier has been developed using a commercial 0.18-μm pseudomorphic high electron-mobility transistor (pHEMT) process. For the application of self-bias technique, the low noise amplifier (LNA) is biased from a single power supply rail. The LNA has achieved a broadband performance with a gain of more than 18 dB, a noise figure of less than 3.8 dB in the RF frequency of 26 to 40 GHz. The chip size is 3 × 1 mm2.  相似文献   

12.
In this paper, we present a 90-nm high gain (24 dB) linearized CMOS amplifier suitable for applications requiring high degree of port isolation in the Ku-band (13.2–15.4 GHz). The two-stage design is composed of a low-noise common-gate stage and a gain-boosting cascode block with an integrated output buffer for measurement. Optimization of input stage and load-port buffer parameters improves the front-end's linear coverage, port return-loss, and overall gain without burdening its power demand and noise contribution. With low gate bias voltages (0.65–1.2 V) and an active current source, <?10 dB port reflection loss and 3.25–3.41 dB NF are achieved over the bandwidth. The input reflection loss of the overall amplifier lies between ?35 and ?10 dB and the circuit demonstrates a peak forward gain of 24 dB at 14.2 GHz. The output buffer improves the amplifier's forward gain by ~9 dB and pushes down the minimum output return loss to ?22.5 dB while raising the front-end NF by only 0.05 dB. The effect of layout parasites is considered in detail in the 90-nm process models for accurate RF analysis. Monte Carlo simulation predicts 9% and 8% variation in gain and noise figures resulting from a 10% mismatch in process. The Ku-band amplifier including the buffer block consumes 7.69 mA from a 1.2-V supply. The proposed circuit techniques achieve superior small signal gain, GHz-per-milliwatt, and range of linearity when compared with simulated results of reported microwave amplifiers.  相似文献   

13.
In this paper we present a balun low noise amplifier (LNA) in which the gain is boosted by using a double feedback structure. The circuit is based on a conventional balun LNA with noise and distortion cancelation. The LNA is based on the combination of a common-gate (CG) stage and common-source (CS) stage. We propose to replace the load resistors by active loads, which can be used to implement local feedback loops (in the CG and CS stages). This will boost the gain and reduce the noise figure (NF). Simulation results, with a 130 nm CMOS technology, show that the gain is 24 dB and the NF is less than 2.7 dB. The total power dissipation is only 5.4 mW (since no extra blocks are required), leading to a figure-of-merit (FOM) of 3.8 mW−1 using a nominal 1.2 V supply. Measurement results are presented for the proposed DFB LNA included in a receiver front-end for biomedical applications (ISM and WMTS).  相似文献   

14.
15.
In this paper, a 2–14 GHz CMOS LNA for ultra-wide-band (UWB) wireless systems is presented. To achieve a good and flat high power gain along with a low noise figure and a high input return loss, the proposed LNA adopts a capacitive cross-coupling common-gate (CG) topology with extra cascaded transistors and inductance. Over the entire 2–14 GHz bandwidth, it exhibits a return loss less than ?10 dB and a small-signal gain of 9 dB. With an input intercept point of ?3 dBm at 5 GHz, it consumes only 9 mW from a 1.5 V supply voltage.  相似文献   

16.
A low power 0.1–1 GHz RF receiver front-end composed of noise-cancelling trans-conductor stage and I/Q switch stage was presented in this paper. The RF receiver front-end chip was fabricated in 0.18 µm RF CMOS. Measurement results show the receiver front-end has a conversion gain of 28.1 dB at high gain mode, and the single-sideband (SSB) noise figure is 6.2 dB. In the low gain mode, the conversion gain of the receiver front-end is 15.5 dB and the IP1dB is −12 dBm. In this design, low power consumption and low cost is achieved by current-reuse and inductor-less topology. The receiver front-end consumes only 5.2 mW from a 1.8 V DC supply and the chip size of the core circuit is 0.12 mm2.  相似文献   

17.
《Microelectronics Journal》2015,46(9):860-868
A 60frames/s CMOS image sensor with column-parallel inverter-based sigma–delta (ΣΔ) ADCs is proposed in this paper. In order to improve the robustness of the inverter, instead of constant power supply, two buffers are designed to provide power supply for inverters. Instead of using of an operational amplifier, an inverter-based switch-capacitor (SC) circuit is adopted to low-voltage low-power ΣΔ modulator. Detailed analysis and design optimization are provided. Due to the use of the inverter-based ΣΔ ADCs, the conversion speed is improved while reducing the area and power consumption. The proposed CMOS image sensor has been fabricated with 0.18 μm CMOS process. The measurement results show that the random noise (RN) is 7erms, the pixel conversion gain is 100 μV/e. Since the measured full well capacity of the pixel is 25000e, the CMOS image sensor achieves a 71 dB dynamic range (DR). The total power consumption at 60frame/s is 58.2 mW.  相似文献   

18.
A linearization technique for ultra-wideband low noise amplifier (UWB LNA) has been designed and fabricated in standard 0.18 μm CMOS technology. The proposed technique exploits the complementary characteristics of NMOS and PMOS to improve the linearity performance. A two-stage UWB LNA is optimized to achieve high linearity over the 3.1-10.6 GHz range. The first stage adopts inverter topology with resistive feedback to provide high linearity and wideband input matching, whereas the second stage is a cascode amplifier with series and shunt inductive peaking techniques to extend the bandwidth and achieve high gain simultaneously. The proposed UWB LNA exhibits a measured flat gain of 15 dB within the entire band, a minimum noise figure of 3.5 dB, and an IIP3 of 6.4 dBm while consuming 8 mA from a 1.8 V power supply. The total chip area is 0.39 mm2, including all pads. The measured input return loss is kept below −11 dB, and the output return loss is −8 dB, from 3.1 to 10.6 GHz.  相似文献   

19.
In this paper a wideband Low Noise Amplifier (LNA) is introduced which also converts the single-ended input to differential signal at the output. It is based on common-source amplifier with active-feedback to provide input matching. The proposed amplifier has the input matched from 500 MHz to 2.5 GHz. It achieves the maximum voltage gain of 24 dB in this band, while the minimum noise figure (NF) is 2.35 dB. The simulated OIP3 of this amplifier is equal to 21 dBm. The LNA has been designed and simulated in a 0.18 μm CMOS process.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号