首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Earlier recognition of breast cancer is crucial to decrease the severity and optimize the survival rate. One of the commonly utilized imaging modalities for breast cancer is histopathological images. Since manual inspection of histopathological images is a challenging task, automated tools using deep learning (DL) and artificial intelligence (AI) approaches need to be designed. The latest advances of DL models help in accomplishing maximum image classification performance in several application areas. In this view, this study develops a Deep Transfer Learning with Rider Optimization Algorithm for Histopathological Classification of Breast Cancer (DTLRO-HCBC) technique. The proposed DTLRO-HCBC technique aims to categorize the existence of breast cancer using histopathological images. To accomplish this, the DTLRO-HCBC technique undergoes pre-processing and data augmentation to increase quantitative analysis. Then, optimal SqueezeNet model is employed for feature extractor and the hyperparameter tuning process is carried out using the Adadelta optimizer. Finally, rider optimization with deep feed forward neural network (RO-DFFNN) technique was utilized employed for breast cancer classification. The RO algorithm is applied for optimally adjusting the weight and bias values of the DFFNN technique. For demonstrating the greater performance of the DTLRO-HCBC approach, a sequence of simulations were carried out and the outcomes reported its promising performance over the current state of art approaches.  相似文献   

2.
3.
In this study, abnormalities in medical images are analysed using three classifiers, and the results are compared. Breast cancer remains a major public health problem among women worldwide. Recently, many algorithms have evolved for the investigation of breast cancer diagnosis through medical imaging. A computer-aided microcalcification detection method is proposed to categorise the nature of breast cancer as either benign or malignant from input mammogram images. The standard mammogram image corpus, the Mammogram Image Analysis Society database is utilised, and feature extraction is performed using five different wavelet families at level 4 and level 6 decomposition. The work is accomplished through firefly algorithm (FA), extreme learning machine (ELM) and least-square-based non-linear regression (LSNLR) classifiers. The performance of the classifiers is compared by benchmark metrics, such as total error rate, specificity, sensitivity, area under the receiver operating characteristic curve, precision, F1 score and the Matthews correlation coefficient. As validation of the classifier results, a kappa analysis is included to determine the agreement among classifiers. The LSNLR classifier attains a 3% to 7% improvement in average accuracy compared with the average classification accuracy of the FA (86.75%) and ELM (90.836%) classifiers.  相似文献   

4.
In the present era, enormous factors contribute to causing cancer. So cancer classification cannot rely only on doctor''s thoughts. As a result, intelligent algorithms concerning doctor''s help are inevitable. Therefore, the authors are motivated to suggest a novel algorithm to classify three cancer datasets; colon, ALL‐AML, and leukaemia cancers. Their proposed algorithm is based on the deep neural network and emotional learning process. First of all, by applying the principal component analysis, they had a feature reduction. Then, they used deep neural as a feature extraction. Then, they implemented different classifiers; multi‐layer perceptron, support vector machine (SVM), decision tree, and Gaussian mixture model. In the end, because in the real world, especially when working on systems biology, unpredictable events, and uncertainties are undeniable, the robustness of their model against uncertainties is important. So they added Gaussian noise to the input features of the first encoder in each dataset, then, they applied the stacked denoising method. Experimental results disclosed that, generally, using emotional learning increased the accuracy. In addition, the highest accuracy was gained by SVM, 91.66, 92.27, and 96.56% for colon, ALL‐AML, and leukaemia, respectively. However, GMM led to the lowest accuracy. The best accuracy gained by GMM was 60%.Inspec keywords: cancer, learning (artificial intelligence), principal component analysis, multilayer perceptrons, feature extraction, support vector machines, pattern classification, Gaussian processes, decision trees, Gaussian noise, medical computingOther keywords: colon cancer, Gaussian noise, stacked denoising method, SVM, support vector machine, emotional learning process, cancer datasets, intelligent algorithms, cancer classification, ALL‐AML, input features, Gaussian mixture model, decision tree, multilayer perceptron, feature extraction, feature reduction, principal component analysis, deep neural network, leukaemia cancers  相似文献   

5.
Human Action Recognition (HAR) is a current research topic in the field of computer vision that is based on an important application known as video surveillance. Researchers in computer vision have introduced various intelligent methods based on deep learning and machine learning, but they still face many challenges such as similarity in various actions and redundant features. We proposed a framework for accurate human action recognition (HAR) based on deep learning and an improved features optimization algorithm in this paper. From deep learning feature extraction to feature classification, the proposed framework includes several critical steps. Before training fine-tuned deep learning models – MobileNet-V2 and Darknet53 – the original video frames are normalized. For feature extraction, pre-trained deep models are used, which are fused using the canonical correlation approach. Following that, an improved particle swarm optimization (IPSO)-based algorithm is used to select the best features. Following that, the selected features were used to classify actions using various classifiers. The experimental process was performed on six publicly available datasets such as KTH, UT-Interaction, UCF Sports, Hollywood, IXMAS, and UCF YouTube, which attained an accuracy of 98.3%, 98.9%, 99.8%, 99.6%, 98.6%, and 100%, respectively. In comparison with existing techniques, it is observed that the proposed framework achieved improved accuracy.  相似文献   

6.
Internet of Things (IoT) defines a network of devices connected to the internet and sharing a massive amount of data between each other and a central location. These IoT devices are connected to a network therefore prone to attacks. Various management tasks and network operations such as security, intrusion detection, Quality-of-Service provisioning, performance monitoring, resource provisioning, and traffic engineering require traffic classification. Due to the ineffectiveness of traditional classification schemes, such as port-based and payload-based methods, researchers proposed machine learning-based traffic classification systems based on shallow neural networks. Furthermore, machine learning-based models incline to misclassify internet traffic due to improper feature selection. In this research, an efficient multilayer deep learning based classification system is presented to overcome these challenges that can classify internet traffic. To examine the performance of the proposed technique, Moore-dataset is used for training the classifier. The proposed scheme takes the pre-processed data and extracts the flow features using a deep neural network (DNN). In particular, the maximum entropy classifier is used to classify the internet traffic. The experimental results show that the proposed hybrid deep learning algorithm is effective and achieved high accuracy for internet traffic classification, i.e., 99.23%. Furthermore, the proposed algorithm achieved the highest accuracy compared to the support vector machine (SVM) based classification technique and k-nearest neighbours (KNNs) based classification technique.  相似文献   

7.
Image retrieval for food ingredients is important work, tremendously tiring, uninteresting, and expensive. Computer vision systems have extraordinary advancements in image retrieval with CNNs skills. But it is not feasible for small-size food datasets using convolutional neural networks directly. In this study, a novel image retrieval approach is presented for small and medium-scale food datasets, which both augments images utilizing image transformation techniques to enlarge the size of datasets, and promotes the average accuracy of food recognition with state-of-the-art deep learning technologies. First, typical image transformation techniques are used to augment food images. Then transfer learning technology based on deep learning is applied to extract image features. Finally, a food recognition algorithm is leveraged on extracted deep-feature vectors. The presented image-retrieval architecture is analyzed based on a small-scale food dataset which is composed of forty-one categories of food ingredients and one hundred pictures for each category. Extensive experimental results demonstrate the advantages of image-augmentation architecture for small and medium datasets using deep learning. The novel approach combines image augmentation, ResNet feature vectors, and SMO classification, and shows its superiority for food detection of small/medium-scale datasets with comprehensive experiments.  相似文献   

8.
One of the most common kinds of cancer is breast cancer. The early detection of it may help lower its overall rates of mortality. In this paper, we robustly propose a novel approach for detecting and classifying breast cancer regions in thermal images. The proposed approach starts with data preprocessing the input images and segmenting the significant regions of interest. In addition, to properly train the machine learning models, data augmentation is applied to increase the number of segmented regions using various scaling ratios. On the other hand, to extract the relevant features from the breast cancer cases, a set of deep neural networks (VGGNet, ResNet-50, AlexNet, and GoogLeNet) are employed. The resulting set of features is processed using the binary dipper throated algorithm to select the most effective features that can realize high classification accuracy. The selected features are used to train a neural network to finally classify the thermal images of breast cancer. To achieve accurate classification, the parameters of the employed neural network are optimized using the continuous dipper throated optimization algorithm. Experimental results show the effectiveness of the proposed approach in classifying the breast cancer cases when compared to other recent approaches in the literature. Moreover, several experiments were conducted to compare the performance of the proposed approach with the other approaches. The results of these experiments emphasized the superiority of the proposed approach.  相似文献   

9.
Machine-learning algorithms have been widely used in breast cancer diagnosis to help pathologists and physicians in the decision-making process. However, the high dimensionality of genetic data makes the classification process a challenging task. In this paper, we propose a new optimized wrapper gene selection method that is based on a nature-inspired algorithm (simulated annealing (SA)), which will help select the most informative genes for breast cancer prediction. These optimal genes will then be used to train the classifier to improve its accuracy and efficiency. Three supervised machine-learning algorithms, namely, the support vector machine, the decision tree, and the random forest were used to create the classifier models that will help to predict breast cancer. Two different experiments were conducted using three datasets: Gene expression (GE), deoxyribonucleic acid (DNA) methylation, and a combination of the two. Six measures were used to evaluate the performance of the proposed algorithm, which include the following: Accuracy, precision, recall, specificity, area under the curve (AUC), and execution time. The effectiveness of the proposed classifiers was evaluated through comprehensive experiments. The results demonstrated that our approach outperformed the conventional classifiers as expected in terms of accuracy and execution time. High accuracy values of 99.77%, 99.45%, and 99.45% have been achieved by SA-SVM for GE, DNA methylation, and the combined datasets, respectively. The execution time of the proposed approach was significantly reduced, in comparison to that of the traditional classifiers and the best execution time has been reached by SA-SVM, which was 0.02, 0.03, and 0.02 on GE, DNA methylation, and the combined datasets respectively. In regard to precision and specificity, SA-RF obtained the best result of 100 on GE dataset. While SA-SVM attained the best recall result of 100 on GE dataset.  相似文献   

10.
Breast cancer is caused by the abnormal and rapid growth of breast cells. An early diagnosis can ensure an easier and effective treatment. A mass in the breast is a significant early sign of breast cancer, even though differentiating the cancerous mass's tissue from normal tissue for diagnosis is a difficult task for radiologists. The development of computer-aided detection systems in recent years has led to nondestructive and efficient cancer diagnostic techniques. This paper proposes a comprehensive method to locate the cancerous region in the mammogram image. This method employs image noise reduction, optimal image segmentation based on the convolutional neural network, a grasshopper optimization algorithm, and optimized feature extraction and feature selection based on the grasshopper optimization algorithm, thereby improving precision and decreasing the computational cost. This method was applied to the Mammographic Image Analysis Society Digital Mammogram Database and Digital Database for Screening Mammography breast cancer databases and the simulation results were compared with 10 different state-of-the-art methods to analyze the proposed system's efficiency. Final results showed that the proposed method had 96% Sensitivity, 93% Specificity, 85% PPV, 97% NPV, 92% accuracy, and better efficiency than other traditional methods in terms of Sensitivity, Specificity, PPV, NPV, and Accuracy.  相似文献   

11.
Background: In medical image analysis, the diagnosis of skin lesions remains a challenging task. Skin lesion is a common type of skin cancer that exists worldwide. Dermoscopy is one of the latest technologies used for the diagnosis of skin cancer. Challenges: Many computerized methods have been introduced in the literature to classify skin cancers. However, challenges remain such as imbalanced datasets, low contrast lesions, and the extraction of irrelevant or redundant features. Proposed Work: In this study, a new technique is proposed based on the conventional and deep learning framework. The proposed framework consists of two major tasks: lesion segmentation and classification. In the lesion segmentation task, contrast is initially improved by the fusion of two filtering techniques and then performed a color transformation to color lesion area color discrimination. Subsequently, the best channel is selected and the lesion map is computed, which is further converted into a binary form using a thresholding function. In the lesion classification task, two pre-trained CNN models were modified and trained using transfer learning. Deep features were extracted from both models and fused using canonical correlation analysis. During the fusion process, a few redundant features were also added, lowering classification accuracy. A new technique called maximum entropy score-based selection (MESbS) is proposed as a solution to this issue. The features selected through this approach are fed into a cubic support vector machine (C-SVM) for the final classification. Results: The experimental process was conducted on two datasets: ISIC 2017 and HAM10000. The ISIC 2017 dataset was used for the lesion segmentation task, whereas the HAM10000 dataset was used for the classification task. The achieved accuracy for both datasets was 95.6% and 96.7%, respectively, which was higher than the existing techniques.  相似文献   

12.
Breast cancer is the second deadliest type of cancer. Early detection of breast cancer can considerably improve the effectiveness of treatment. A significant early sign of breast cancer is the mass. However, separating the cancerous masses from the normal portions of the breast tissue is usually a challenge for radiologists. Recently, because of the availability of high‐accuracy computing, computer‐aided detection systems based on image processing have become capable of accurately diagnosing the various types of cancers. The main purpose of this study is to utilize a powerful image segmentation method for the diagnosis of cancerous regions through mammography, based on a new configuration of the multilayer perceptron (MLP) neural network. The most popular method for minimizing the errors in an MLP neural network is backpropagation. However, this method has certain drawbacks, such as a low convergence speed and becoming trapped at the local minimum. In this study, a new training algorithm based on the whale optimization algorithm is proposed for the MLP network. This algorithm is capable of solving various problems toward the current algorithms for the analyzed systems. The proposed method is validated on the Mammographic Image Analysis Society database, which contains 322 digitized mammography images, and the Digital Database for Screening Mammography, which contains approximately 2500 digitized mammography images. To assess the detection performance of the proposed system, the correct detection rate, percentage of identification with false acceptance, and percentage of identification with false rejection were evaluated and compared using various methods. The results indicate that the proposed method is highly efficient and yields significantly better accuracy compared with other methods.  相似文献   

13.
In this era, deep learning methods offer a broad spectrum of efficient and original algorithms to recognize or predict an output when given a sequence of inputs. In current trends, deep learning methods using recent long short-term memory (LSTM) algorithms try to provide superior performance, but they still have limited effectiveness when detecting sequences of complex human activity. In this work, we adapted the LSTM algorithm into a synchronous algorithm (sync-LSTM), enabling the model to take multiple parallel input sequences to produce multiple parallel synchronized output sequences. The proposed method is implemented for simultaneous human activity recognition (HAR) using heterogeneous sensor data in a smart home. HAR assists artificial intelligence in providing services to users according to their preferences. The sync-LSTM algorithm improves learning performance and sees its potential for real-world applications in complex HAR, such as concurrent activity, with higher accuracy and satisfactory computational complexity. The adapted algorithm for HAR is also applicable in the fields of ambient assistive living, healthcare, robotics, pervasive computing, and astronomy. Extensive experimental evaluation with publicly available datasets demonstrates the competitive recognition capabilities of our approach. The sync-LSTM algorithm improves learning performance and has the potential for real-life applications in complex HAR. For concurrent activity recognition, our proposed method shows an accuracy of more than 97%.  相似文献   

14.
In recent years, with the development of machine learning and deep learning, it is possible to identify and even control crop diseases by using electronic devices instead of manual observation. In this paper, an image recognition method of citrus diseases based on deep learning is proposed. We built a citrus image dataset including six common citrus diseases. The deep learning network is used to train and learn these images, which can effectively identify and classify crop diseases. In the experiment, we use MobileNetV2 model as the primary network and compare it with other network models in the aspect of speed, model size, accuracy. Results show that our method reduces the prediction time consumption and model size while keeping a good classification accuracy. Finally, we discuss the significance of using MobileNetV2 to identify and classify agricultural diseases in mobile terminal, and put forward relevant suggestions.  相似文献   

15.
Named Entity Recognition (NER) is one of the fundamental tasks in Natural Language Processing (NLP), which aims to locate, extract, and classify named entities into a predefined category such as person, organization and location. Most of the earlier research for identifying named entities relied on using handcrafted features and very large knowledge resources, which is time consuming and not adequate for resource-scarce languages such as Arabic. Recently, deep learning achieved state-of-the-art performance on many NLP tasks including NER without requiring hand-crafted features. In addition, transfer learning has also proven its efficiency in several NLP tasks by exploiting pretrained language models that are used to transfer knowledge learned from large-scale datasets to domain-specific tasks. Bidirectional Encoder Representation from Transformer (BERT) is a contextual language model that generates the semantic vectors dynamically according to the context of the words. BERT architecture relay on multi-head attention that allows it to capture global dependencies between words. In this paper, we propose a deep learning-based model by fine-tuning BERT model to recognize and classify Arabic named entities. The pre-trained BERT context embeddings were used as input features to a Bidirectional Gated Recurrent Unit (BGRU) and were fine-tuned using two annotated Arabic Named Entity Recognition (ANER) datasets. Experimental results demonstrate that the proposed model outperformed state-of-the-art ANER models achieving 92.28% and 90.68% F-measure values on the ANERCorp dataset and the merged ANERCorp and AQMAR dataset, respectively.  相似文献   

16.
Image processing plays a vital role in many areas such as healthcare, military, scientific and business due to its wide variety of advantages and applications. Detection of computed tomography (CT) liver disease is one of the difficult tasks in the medical field. Hand crafted features and classifications are the two types of methods used in the previous approaches, to classify liver disease. But these classification results are not optimal. In this article, we propose a novel method utilizing deep belief network (DBN) with grasshopper optimization algorithm (GOA) for liver disease classification. Initially, the image quality is enhanced by preprocessing techniques and then features like texture, color and shape are extracted. The extracted features are reduced by utilizing the dimensionality reduction method like principal component analysis (PCA). Here, the DBN parameters are optimized using GOA for recognizing liver disease. The experiments are performed on the real time and open source CT image datasets which embraces normal, cyst, hepatoma, and cavernous hemangiomas, fatty liver, metastasis, cirrhosis, and tumor samples. The proposed method yields 98% accuracy, 95.82% sensitivity, 97.52% specificity, 98.53% precision, and 96.8% F-1 score in simulation process when compared with other existing techniques.  相似文献   

17.
Histopathology is considered as the gold standard for diagnosing breast cancer. Traditional machine learning (ML) algorithm provides a promising performance for cancer diagnosis if the training dataset is balanced. Nevertheless, if the training dataset is imbalanced the performance of the ML model is skewed toward the majority class. It may pose a problem for the pathologist because if the benign sample is misclassified as malignant, then a pathologist could make a misjudgment about the diagnosis. A limited investigation has been done in literature for solving the class imbalance problem in computer‐aided diagnosis (CAD) of breast cancer using histopathology. This work proposes a hybrid ML model to solve the class imbalance problem. The proposed model employs pretrained ResNet50 and the kernelized weighted extreme learning machine for CAD of breast cancer using histopathology. The breast cancer histopathological images are obtained from publicly available BreakHis and BisQue datasets. The proposed method achieved a reasonable performance for the classification of the minority as well as the majority class instances. In comparison, the proposed approach outperforms the state‐of‐the‐art ML models implemented in previous studies using the same training‐testing folds of the publicly accessible BreakHis dataset.  相似文献   

18.
Real-time detection of Covid-19 has definitely been the most widely-used world-wide classification problem since the start of the pandemic from 2020 until now. In the meantime, airspace opacities spreads related to lung have been of the most challenging problems in this area. A common approach to do on that score has been using chest X-ray images to better diagnose positive Covid-19 cases. Similar to most other classification problems, machine learning-based approaches have been the first/most-used candidates in this application. Many schemes based on machine/deep learning have been proposed in recent years though increasing the performance and accuracy of the system has still remained an open issue. In this paper, we develop a novel deep learning architecture to better classify the Covid-19 X-ray images. To do so, we first propose a novel multi-habitat migration artificial bee colony (MHMABC) algorithm to improve the exploitation/exploration of artificial bee colony (ABC) algorithm. After that, we optimally train the fully connected by using the proposed MHMABC algorithm to obtain better accuracy and convergence rate while reducing the execution cost. Our experiment results on Covid-19 X-ray image dataset show that the proposed deep architecture has a great performance in different important optimization parameters. Furthermore, it will be shown that the MHMABC algorithm outperforms the state-of-the-art algorithms by evaluating its performance using some well-known benchmark datasets.  相似文献   

19.
To find a better way to screen early lung cancer, motivated by the great success of deep learning, we empirically investigate the challenge of classifying lung nodules in computed tomography (CT) in an end‐to‐end manner. Multi‐view convolutional neural networks (MV‐CNN) are proposed in this article for lung nodule classification. Unlike the traditional CNNs, a MV‐CNN takes multiple views of each entered nodule. We carry out a binary classification (benign and malignant) and a ternary classification (benign, primary malignant, and metastatic malignant) using the Lung Image Database Consortium and Image Database Resource Initiative database. The results show that, for binary or ternary classifications, the multiview strategy produces higher accuracy than the single view method, even for cases that are over‐fitted. Our model achieves an error rate of 5.41 and 13.91% for binary and ternary classifications, respectively. Finally, the receiver operating characteristic curve and t‐distributed stochastic neighbor embedding algorithm are used to analyze the models. The results reveal that the deep features learned by the model proposed in this article have a higher separability than features from the image space and the multiview strategies; therefore, researchers can get better representation. © 2017 Wiley Periodicals, Inc. Int J Imaging Syst Technol, 27, 12–22, 2017  相似文献   

20.
《中国工程学刊》2012,35(1):80-92
ABSTRACT

Using machine learning algorithms for early prediction of the signs and symptoms of breast cancer is in demand nowadays. One of these algorithms is the K-nearest neighbor (KNN), which uses a technique for measuring the distance among data. The performance of KNN depends on the number of neighboring elements known as the K value. This study involves the exploration of KNN performance by using various distance functions and K values to find an effective KNN. Wisconsin breast cancer (WBC) and Wisconsin diagnostic breast cancer (WDBC) datasets from the UC Irvine machine learning repository were used as our main data sources. Experiments with each dataset were composed of three iterations. The first iteration of the experiment was without feature selection. The second one was the L1-norm based selection from the model, which used the linear support vector classifier feature selection, and the third iteration was with Chi-square-based feature selection. Numerous evaluation metrics like accuracy, receiver operating characteristic (ROC) curve with the area under curve (AUC) and sensitivity, etc., were used for the assessment of the implemented techniques. The results indicated that the technique involving the Chi-square-based feature selection achieved the highest accuracy with the Canberra or Manhattan distance functions for both datasets. The optimal K values for these distance functions ranged from 1 to 9. This study indicated that with the appropriate selection of the K value and a distance function in KNN, the Chi-square-based feature selection for the WBC datasets gives the highest accuracy rate as compared with the existing models.

Abbreviations: KNN: K-nearest neighbor; Chi2: Chi-square; WBC: Wisconsin breast cancer  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号