首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A homomorphism from an oriented graph G to an oriented graph H is an arc-preserving mapping φ from V(G) to V(H), that is φ(x)φ(y) is an arc in H whenever xy is an arc in G. The oriented chromatic number of G is the minimum order of an oriented graph H such that G has a homomorphism to H. The oriented chromatic index of G is the minimum order of an oriented graph H such that the line-digraph of G has a homomorphism to H.In this paper, we determine for every k?3 the oriented chromatic number and the oriented chromatic index of the class of oriented outerplanar graphs with girth at least k.  相似文献   

2.
A graph G is 2-outerplanar if it has a planar embedding such that the subgraph obtained by removing the vertices of the outer face is outerplanar. The oriented chromatic number of an oriented graph H is defined as the minimum order of an oriented graph H such that H has a homomorphism to H. In this paper, we prove that 2-outerplanar graphs are 4-degenerate. We also show that oriented 2-outerplanar graphs have a homomorphism to the Paley tournament QR67, which implies that their (strong) oriented chromatic number is at most 67.  相似文献   

3.
An oriented k-coloring of an oriented graph G is a mapping such that (i) if xyE(G) then c(x)≠c(y) and (ii) if xy,ztE(G) then c(x)=c(t)⇒c(y)≠c(z). The oriented chromatic number of an oriented graph G is defined as the smallest k such that G admits an oriented k-coloring. We prove in this paper that every Halin graph has oriented chromatic number at most 9, improving a previous bound proposed by Vignal.  相似文献   

4.
In this paper, we focus on the oriented coloring of graphs. Oriented coloring is a coloring of the vertices of an oriented graph G without symmetric arcs such that (i) no two neighbors in G are assigned the same color, and (ii) if two vertices u and v such that (u,v)∈A(G) are assigned colors c(u) and c(v), then for any (z,t)∈A(G), we cannot have simultaneously c(z)=c(v) and c(t)=c(u). The oriented chromatic number of an unoriented graph G is the smallest number k of colors for which any of the orientations of G can be colored with k colors.The main results we obtain in this paper are bounds on the oriented chromatic number of particular families of planar graphs, namely 2-dimensional grids, fat trees and fat fat trees.  相似文献   

5.
A homomorphism from an oriented graph G to an oriented graph H is an arc-preserving mapping f from V(G) to V(H), that is f(x)f(y) is an arc in H whenever xy is an arc in G. The oriented chromatic number of G is the minimum order of an oriented graph H such that G has a homomorphism to H. In this paper, we determine the oriented chromatic number of the class of partial 2-trees for every girth g?3. We also give an upper bound for the oriented chromatic number of planar graphs with girth at least 11.  相似文献   

6.
An adjacent vertex-distinguishing edge coloring of a simple graph G is a proper edge coloring of G such that incident edge sets of any two adjacent vertices are assigned different sets of colors. A total coloring of a graph G is a coloring of both the edges and the vertices. A total coloring is proper if no two adjacent or incident elements receive the same color. An adjacent vertex-distinguishing total coloring h of a simple graph G=(V,E) is a proper total coloring of G such that H(u)≠H(v) for any two adjacent vertices u and v, where H(u)={h(wu)|wuE(G)}∪{h(u)} and H(v)={h(xv)|xvE(G)}∪{h(v)}. The minimum number of colors required for an adjacent vertex-distinguishing edge coloring (resp. an adjacent vertex-distinguishing total coloring) of G is called the adjacent vertex-distinguishing edge chromatic number (resp. adjacent vertex-distinguishing total chromatic number) of G and denoted by (resp. χat(G)). In this paper, we consider the adjacent vertex-distinguishing edge chromatic number and adjacent vertex-distinguishing total chromatic number of the hypercube Qn, prove that for n?3 and χat(Qn)=Δ(Qn)+2 for n?2.  相似文献   

7.
An acyclic coloring of a graph G is a coloring of its vertices such that: (i) no two neighbors in G are assigned the same color and (ii) no bicolored cycle can exist in G. The acyclic chromatic number of G is the least number of colors necessary to acyclically color G. In this paper, we show that any graph of maximum degree 5 has acyclic chromatic number at most 9, and we give a linear time algorithm that achieves this bound.  相似文献   

8.
We prove that there exist oriented planar graphs with oriented chromatic number at least 16. Using a result of Raspaud and Sopena [Inform. Process. Lett. 51 (1994) 171-174], this gives that the oriented chromatic number of the family of oriented planar graphs lies between 16 and 80.  相似文献   

9.
A 2-dipath k-coloring f of an oriented graph is a mapping from to the color set {1,2,…,k} such that f(x)≠f(y) whenever two vertices x and y are linked by a directed path of length 1 or 2. The 2-dipath chromatic number of is the smallest k such that has a 2-dipath k-coloring. In this paper we prove that if is an oriented Halin graph, then . There exist infinitely many oriented Halin graphs such that .  相似文献   

10.
Let G be a planar graph with maximum degree Δ(G). We use and to denote the list edge chromatic number and list total chromatic number of G, respectively. In this paper, it is proved that and if Δ(G)?6 and G has neither C4 nor C6, or Δ(G)?7 and G has neither C5 nor C6, where Ck is a cycle of length k.  相似文献   

11.
A proper edge coloring of a graph G is called acyclic if there is no 2-colored cycle in G. The acyclic chromatic index of G, denoted by , is the least number of colors in an acyclic edge coloring of G. Let G be a planar graph with maximum degree Δ(G). In this paper, we show that , if G contains no 4-cycle; , if G contains no intersecting triangles; and if G contains no adjacent triangles.  相似文献   

12.
The radio frequency assignment problem is to minimize the number of frequencies used by transmitters with no interference in radio communication networks; it can be modeled as the minimum vertex coloring problem on unit disk graphs. In this paper, we consider the on-line first-fit algorithm for the problem and show that the competitive ratio of the algorithm for the unit disk graph G with χ(G)=2 is 3, where χ(G) is the chromatic number of G. Moreover, the competitive ratio of the algorithm for the unit disk graph G with χ(G)>2 is at least 4−3/χ(G). The average performance for the algorithm is also discussed in this paper.  相似文献   

13.
The intention of this note is to motivate the researchers to study Hadwiger's conjecture for circular arc graphs. Let η(G) denote the largest clique minor of a graph G, and let χ(G) denote its chromatic number. Hadwiger's conjecture states that η(G)?χ(G) and is one of the most important and difficult open problems in graph theory. From the point of view of researchers who are sceptical of the validity of the conjecture, it is interesting to study the conjecture for graph classes where η(G) is guaranteed not to grow too fast with respect to χ(G), since such classes of graphs are indeed a reasonable place to look for possible counterexamples. We show that in any circular arc graph G, η(G)?2χ(G)−1, and there is a family with equality. So, it makes sense to study Hadwiger's conjecture for this family.  相似文献   

14.
We define a perfect coloring of a graph G as a proper coloring of G such that every connected induced subgraph H of G uses exactly ω(H) many colors where ω(H) is the clique number of H. A graph is perfectly colorable if it admits a perfect coloring. We show that the class of perfectly colorable graphs is exactly the class of perfect paw-free graphs. It follows that perfectly colorable graphs can be recognized and colored in linear time.  相似文献   

15.
Alon  Zaks 《Algorithmica》2008,32(4):611-614
Abstract. A proper coloring of the edges of a graph G is called acyclic if there is no two-colored cycle in G . The acyclic edge chromatic number of G , denoted by a'(G) , is the least number of colors in an acyclic edge coloring of G . For certain graphs G , a'(G)\geq Δ(G)+2 where Δ(G) is the maximum degree in G . It is known that a'(G)≤ Δ + 2 for almost all Δ -regular graphs, including all Δ -regular graphs whose girth is at least log Δ . We prove that determining the acyclic edge chromatic number of an arbitrary graph is an NP-complete problem. For graphs G with sufficiently large girth in terms of Δ(G) , we present deterministic polynomial-time algorithms that color the edges of G acyclically using at most Δ(G)+2 colors.  相似文献   

16.
In this paper, we study the complexity of several coloring problems on graphs, parameterized by the treewidth of the graph.
1.
The List Coloring problem takes as input a graph G, together with an assignment to each vertex v of a set of colors Cv. The problem is to determine whether it is possible to choose a color for vertex v from the set of permitted colors Cv, for each vertex, so that the obtained coloring of G is proper. We show that this problem is W[1]-hard, parameterized by the treewidth of G. The closely related Precoloring Extension problem is also shown to be W[1]-hard, parameterized by treewidth.
2.
An equitable coloring of a graph G is a proper coloring of the vertices where the numbers of vertices having any two distinct colors differs by at most one. We show that the problem is hard for W[1], parameterized by the treewidth plus the number of colors. We also show that a list-based variation, List Equitable Coloring is W[1]-hard for forests, parameterized by the number of colors on the lists.
3.
The list chromatic numberχl(G) of a graph G is defined to be the smallest positive integer r, such that for every assignment to the vertices v of G, of a list Lv of colors, where each list has length at least r, there is a choice of one color from each vertex list Lv yielding a proper coloring of G. We show that the problem of determining whether χl(G)?r, the List Chromatic Number problem, is solvable in linear time on graphs of constant treewidth.
  相似文献   

17.
Backbone coloring of planar graphs without special circles   总被引:1,自引:0,他引:1  
In this paper, we prove that if G is a connected planar graph that is C6-free or C7-free and without adjacent triangles, then there exists a spanning tree T of G such that χb(G,T)≤4.  相似文献   

18.
The bipartite edge frustration of a graph G, denoted by φ(G), is the smallest number of edges that have to be deleted from G to obtain a bipartite spanning subgraph of G. This topological index is related to the well-known Max-cut problem, and has important applications in computing stability of fullerenes. In this paper, the bipartite edge frustration of an infinite family of fullerenes is computed. Moreover, this quantity for four classes of graphs arising from a given graph under different types of edge subdivisions is investigated.  相似文献   

19.
An edge covering coloring of a graph G is an edge-coloring of G such that each color appears at each vertex at least one time. The maximum integer k such that G has an edge covering coloring with k colors is called the edge covering chromatic index of G and denoted by . It is known that for any graph G with minimum degree δ(G), it holds that . Based on the subgraph of G induced by the vertices of minimum degree, we find a new sufficient condition for a graph G to satisfy . This result substantially extends a result of Wang et al. in 2006.  相似文献   

20.
Certain subgraphs of a given graph G restrict the minimum number χ(G) of colors that can be assigned to the vertices of G such that the endpoints of all edges receive distinct colors. Some of such subgraphs are related to the celebrated Strong Perfect Graph Theorem, as it implies that every graph G contains a clique of size χ(G), or an odd hole or an odd anti-hole as an induced subgraph. In this paper, we investigate the impact of induced maximal cliques, odd holes and odd anti-holes on the polytope associated with a new 0-1 integer programming formulation of the graph coloring problem. We show that they induce classes of facet defining inequalities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号