首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The essential splicing factor SF2/ASF and the heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) modulate alternative splicing in vitro of pre-mRNAs that contain 5' splice sites of comparable strengths competing for a common 3' splice site. Using natural and model pre-mRNAs, we have examined whether the ratio of SF2/ASF to hnRNP A1 also regulates other modes of alternative splicing in vitro. We found that an excess of SF2/ASF effectively prevents inappropriate exon skipping and also influences the selection of mutually exclusive tissue-specific exons in natural beta-tropomyosin pre-mRNA. In contrast, an excess of hnRNP A1 does not cause inappropriate exon skipping in natural constitutively or alternatively spliced pre-mRNAs. Although hnRNP A1 can promote alternative exon skipping, this effect is not universal and is dependent, e.g., on the size of the internal alternative exon and on the strength of the polypyrimidine tract in the preceding intron. With appropriate alternative exons, an excess of SF2/ASF promotes exon inclusion, whereas an excess of hnRNP A1 causes exon skipping. We propose that in some cases the ratio of SF2/ASF to hnRNP A1 may play a role in regulating alternative splicing by exon inclusion or skipping through the antagonistic effects of these proteins on alternative splice site selection.  相似文献   

2.
3.
The nuclear matrix antigen recognized by the monoclonal antibody (mAb) B1C8 is a novel serine (S) and arginine (R)-rich protein associated with splicing complexes and is named here SRm160 (SR-related matrix protein of 160 kD). SRm160 contains multiple SR repeats, but unlike proteins of the SR family of splicing factors, lacks an RNA recognition motif. SRm160 and a related protein SRm300 (the 300-kD nuclear matrix antigen recognized by mAb B4A11) form a complex that is required for the splicing of specific pre-mRNAs. The SRm160/300 complex associates with splicing complexes and promotes splicing through interactions with SR family proteins. Binding of SRm160/300 to pre-mRNA is normally also dependent on U1 snRNP and is stabilized by U2 snRNP. Thus, SRm160/300 forms multiple interactions with components bound directly to important sites within pre-mRNA. The results suggest that a complex of the nuclear matrix proteins SRm160 and SRm300 functions as a coactivator of pre-mRNA splicing.  相似文献   

4.
The relationship between preferences among alternative 5' splice sites and their sequences was investigated using as model mouse myoblasts and myotubes after transient transfection with the rabbit beta-globin gene. The preferences for the use of two different 5' splice sites, acting with different efficiencies to direct splicing in vivo are reported. The predominant selection of the upstream splice site has been shown in normal mouse myoblasts. In the case of differentiated myotubes the downstream splice was 1.4 times better used. The results indicate that there were differences in the preferences for the use of the two alternative splice sites between non-differentiated and terminally differentiated cells, within the same-cell line.  相似文献   

5.
6.
Previous studies have reported the use of globin chain-specific complementary DNAs to quantitate the amount of human globin mRNA and human globin genes in normal and abnormal cells. In order to obtain larger amounts and more purified globin mRNAs as templates for these experiments, preparative polyacrylamide gel electrophoresis in formamide has been used to separate alpha- and beta-globin mRNA from polyadenylate containing RNA of human reticulocytes. Fifty to one hundred-fifty micrograms of RNA can be applied to the preparative gel and the recovery of the globin mRNA is about 50%. The isolated alpha- and beta-globin mRNAs were assayed in a wheat germ cell-free system, and the alpha- and beta-globin synthesized quantitated by cellulose acetate electrophoresis. The purified alpha- and beta-globin mRNAs direct globin synthesis which is more than 90% either alpha- or beta-globin, respectively. The cDNAs prepared using each of the isolated mRNAs as template are also shown to be specific for alpha- or beta-mRNA sequences. The gel electrophoresis technique used permits the relatively large scale isolation of alpha- or beta-globin mRNAs from human cells.  相似文献   

7.
Galectins are a family of beta-galactoside-binding proteins that contain characteristic amino acid sequences in the carbohydrate recognition domain (CRD) of the polypeptide. The polypeptide of galectin-1 contains a single domain, the CRD. The polypeptide of galectin-3 has two domains, a carboxyl-terminal CRD fused onto a proline- and glycine-rich amino-terminal domain. In previous studies, we showed that galectin-3 is a required factor in the splicing of nuclear pre-mRNA, assayed in a cell-free system. We now document that (i) nuclear extracts derived from HeLa cells contain both galectins-1 and -3; (ii) depletion of both galectins from the nuclear extract either by lactose affinity adsorption or by double-antibody adsorption results in a concomitant loss of splicing activity; (iii) depletion of either galectin-1 or galectin-3 by specific antibody adsorption fails to remove all of the splicing activity, and the residual splicing activity is still saccharide inhibitable; (iv) either galectin-1 or galectin-3 alone is sufficient to reconstitute, at least partially, the splicing activity of nuclear extracts depleted of both galectins; and (v) although the carbohydrate recognition domain of galectin-3 (or galectin-1) is sufficient to restore splicing activity to a galectin-depleted nuclear extract, the concentration required for reconstitution is greater than that of the full-length galectin-3 polypeptide. Consistent with these functional results, double-immunofluorescence analyses show that within the nucleus, galectin-3 colocalizes with the speckled structures observed with splicing factor SC35. Similar results are also obtained with galectin-1, although in this case, there are areas of galectin-1 devoid of SC35 and vice versa. Thus, nuclear galectins exhibit functional redundancy in their splicing activity and partition, at least partially, in the nucleoplasm with another known splicing factor.  相似文献   

8.
EDA is a facultative type III homology of human fibronectin encoded by an alternative spliced exon. The EDA+ and EDA- mRNA forms show a cell type specific distribution with their relative proportion varying during development, aging and oncogenic transformation. We have previously demonstrated that an 81 bp nucleotide sequence within the exon itself is essential for differential RNA processing. Fine mapping of cis acting elements within this region has been carried out to identify possible target sites for the modulation of alternative splicing. There are at least two short nucleotide sequences involved. Element A (GAAGAAGA) is a positive modulator for the recognition of the exon, its deletion results in constitutive exclusion of the EDA exon. Element B (CAAGG) is a negative modulator for exon recognition, its deletion results in constitutive inclusion of the EDA exon. This bipartite structure of the splicing enhancer is a novel feature of the mammalian exons.  相似文献   

9.
Generally, mRNAs that prematurely terminate translation are abnormally low in abundance. In the case of mammalian cells, nonsense codons most often mediate a reduction in the abundance of newly synthesized, nucleus-associated mRNA by a mechanism that is not well understood. With the aim of defining cis-acting sequences that are important to the reduction process, the effects of particular beta-globin gene rearrangements on the metabolism of beta-globin mRNAs harboring one of a series of nonsense codons have been assessed. Results indicate that nonsense codons located 54 bp or more upstream of the 3'-most intron, intron 2, reduce the abundance of nucleus-associated mRNA to 10-15% of normal without altering the level of either of the two introns within pre-mRNA. The level of cytoplasmic mRNA is also reduced to 10-15% of normal, indicating that decay does not take place once the mRNA is released from an association with nuclei into the cytoplasm. A nonsense codon within exon 2 that does not reduce mRNA abundance can be converted to the type that does by (1) inserting a sufficiently large in-frame sequence immediately upstream of intron 2 or (2) deleting and reinserting intron 2 a sufficient distance downstream of its usual position. These findings indicate that only those nonsense codons located more than 54 bp upstream of the 3'-most intron reduce beta-globin mRNA abundance, which is remarkably consistent with which nonsense codons within the triosephosphate isomerase (TPI) gene reduce TPI mRNA abundance. We propose that the 3'-most exon-exon junction of beta-globin mRNA and, possibly, most mRNAs is marked by the removal of the 3'-most intron during pre-mRNA splicing and that the "mark" accompanies mRNA during transport to the cytoplasm. When cytoplasmic ribosomes terminate translation more than 54 nt upstream of the mark during or immediately after transport, the mRNA is subjected to nonsense-mediated decay. The finding that deletion of beta-globin intron 2 does not appreciably alter the effect of any nonsense codon on beta-globin mRNA abundance suggests that another cis-acting sequence functions in nonsense-mediated decay comparably to intron 2, at least in the absence of intron 2, possibly as a fail-safe mechanism. The analysis of deletions and insertions indicates that this sequence resides within the coding region and can be functionally substituted by intron 2.  相似文献   

10.
Inefficient splicing of human immunodeficiency virus type 1 (HIV-1) RNA is necessary to preserve unspliced and singly spliced viral RNAs for transport to the cytoplasm by the Rev-dependent pathway. Signals within the HIV-1 genome that control the rate of splicing include weak 3' splice sites, exon splicing enhancers (ESE), and exon splicing silencers (ESS). We have previously shown that an ESS present within tat exon 2 (ESS2) and a suboptimal 3' splice site together act to inhibit splicing at the 3' splice site flanking tat exon 2. This occurs at an early step in spliceosome assembly. Splicing at the 3' splice site flanking tat exon 3 is regulated by a bipartite element composed of an ESE and an ESS (ESS3). Here we show that ESS3 is composed of two smaller elements (AGAUCC and UUAG) that can inhibit splicing independently. We also show that ESS3 is more active in the context of a heterologous suboptimal splice site than of an optimal 3' splice site. ESS3 inhibits splicing by blocking the formation of a functional spliceosome at an early step, since A complexes are not detected in the presence of ESS3. Competitor RNAs containing either ESS2 or ESS3 relieve inhibition of splicing of substrates containing ESS3 or ESS2. This suggests that a common cellular factor(s) may be required for the inhibition of tat mRNA splicing mediated by ESS2 and ESS3.  相似文献   

11.
The accumulation of alpha- and beta-globin mRNA sequences in murine erythroleukemia cells (MELC) treated with various inducers has been studied using specific alpha- and beta-globin complementary DNAs (cDNAs). In cells cultured with dimethylsulfoxide (Me2SO), hexamethylene bisacetamide (HMBA) or butyric acid, accumulation of alpha-globin mRNA is detectable after 16, 12 and 8 hr of culture, respectively. An increase in beta-globin mRNA sequences is not detected until 20-24 hr after culture. In cells exposed to hemin, both alpha- and beta-globin mRNAs are detectable by 6 hr of culture, and a constant ratio of alpha/beta-mRNA is maintained during induction. In maximally induced cells, the alpha/beta-globin mRNA ratios are approximately 1 in cells induced by Me2SO and HMBA, and 0.66 and 0.3-0.50 in cells induced by butyric acid and hemin, respectively. Thus different inducers of erythroid differentiation in MELC lead to different times of onset of the expression of alpha- and beta-like genes. In addition, the relative accumulation of alpha- and beta-globulin mRNAs in induced cells differs with various types of inducers.  相似文献   

12.
The Rhesus (Rh) blood group system shows complex polymorphisms in the human. Some of the heterogeneity may be generated by alternative RNA splicing. For a systematic analysis of Rh-related mRNA isoforms expressed in reticulocytes, we isolated mRNA, which was then reverse transcribed and amplified by the polymerase chain reaction (PCR) to give Rh-related cDNAs of two segments of 704 bp and 975 bp. The PCR amplification of the 5'-region yielded a single PCR product, whereas a complex electrophoretic pattern of PCR bands was derived from the 3'-region. A highly reproducible ladder of multiple additional bands migrated below the PCR products corresponding to the full-size cDNAs for RhPI and RhPII and encoding two different Rh polypeptides. Eleven and five truncated isoforms of the RhPI and RhPII cDNAs, respectively, were identified in the PCR products. These isoforms appear to be generated by combinatorial splicing of six RhPI and three RhPII exons. Our results suggest that the Rh-related polypeptides consist of a mixture of RhPI and RhPII polypeptide isoforms differing at the C terminus. Multiple RNA splicing pathways are thus operative in the two Rh-related genes even within a single cell lineage of human erythroid cells.  相似文献   

13.
Nucleotide sequences of human beta-globin and its mutant genes were analyzed by quantification method. In the mutant, a GT-->AT change occurs at the 5'-splice site of the second intron, causing skipping of the whole second exon during RNA splicing. A mechanism of exon skipping was proposed on the basis of the intensity of 3'-splice signal sequence.  相似文献   

14.
Among the spliceosomal snRNAs, U2 has the most extensive modifications, including a 5' trimethyl guanosine (TMG) cap, ten 2'-O-methylated residues and 13 pseudouridines. At short times after injection, cellularly derived (modified) U2 but not synthetic (unmodified) U2 rescues splicing in Xenopus oocytes depleted of endogenous U2 by RNase H targeting. After prolonged reconstitution, synthetic U2 regenerates splicing activity; a correlation between the extent of U2 modification and U2 function in splicing is observed. Moreover, 5-fluorouridine-containing U2 RNA, a potent inhibitor of U2 pseudouridylation, specifically abolishes rescue by synthetic U2, while rescue by cellularly derived U2 is not affected. By creating chimeric U2 molecules in which some sequences are from cellularly derived U2 and others are from in vitro transcribed U2, we demonstrate that the functionally important modifications reside within the 27 nucleotides at the 5' end of U2. We further show that 2'-O-methylation and pseudouridylation activities reside in the nucleus and that the 5' TMG cap is not necessary for internal modification but is crucial for splicing activity. Native gel analysis reveals that unmodified U2 is not incorporated into the spliceosome. Examination of the U2 protein profile and glycerol-gradient analysis argue that U2 modifications directly contribute to conversion of the 12S to the 17S U2 snRNP particle, which is essential for spliceosome assembly.  相似文献   

15.
Pre-mRNA splicing takes place in two catalytic steps. The second step is poorly understood, especially in mammals. In yeast, the splicing factors, Prps 16, 17, 18 and Slu7 function exclusively in step II. Here we report the isolation of cDNAs encoding human Prps 16 and 17 which are 41 and 36% identical to their yeast counterparts. The Prp16 gene is essential in yeast, and we show that a chimeric yeast-human Prp16 protein rescues a yeast Prp16 knockout strain. Immunodepletion of hPrp16 from splicing extracts specifically blocks step II, and the activity can be fully restored with recombinant hPrp16. Moreover, both hPrps 16 and 17 associate with the spliceosome late in the splicing pathway. Mutations at the 3' splice site that specifically block step II do not affect the association of hPrps 16 and 17 with the spliceosome, indicating that these factors may function at a stage of step II prior to recognition of the 3' splice site. Recently, the human homologs of Prp18 and Slu7 were identified. The observation that humans contain homologs of all four known step II proteins in yeast indicates that the mechanism for catalytic step II is highly conserved.  相似文献   

16.
17.
Analysis of cDNA clones previously identified an optional intron in the 3'-untranslated region of the human H-ras gene. A possible correlation was observed between failure to remove this intron and overexpression of the gene, suggesting that splicing of the intron may require a specific titrable factor. The splicing signals at the end of the intron deviate from the consensus and may be inefficient, but we noticed that the adjacent exon downstream has a purine-rich region reminiscent of purine-rich splicing enhancers in other genes that stimulate the removal of weak, flanking introns. We show here that the purine-rich region of H-ras has splicing-enhancer activity in the homologous as well as a heterologous context. Interestingly, although the affected intron is outside the coding region, inversion or deletion of the enhancer reduced the transforming activity of oncogenic H-ras alleles severalfold. Experiments with corresponding cDNA constructs suggested that this is not a consequence of the altered structures of the mRNAs produced when the enhancer is inverted or deleted. Instead, we propose that the region controls an additional pre-mRNA processing event besides splicing of the terminal intron. Our work indicates that the purine-rich region may play an important role in the control of H-ras activity.  相似文献   

18.
In Drosophila melanogaster, regulation of the sex determination genes throughout development occurs by sex-specific splicing of their products. The first gene is Sex-lethal(Sxl). The downstream target of Sxl is the gene transformer (tra): the Sxl protein controls the female-specific splicing of the Tra pre-mRNA. The downstream target of the gene tra is the gene double-sex (dsx): the Tra protein of females, controls the female-specific splicing of the Dsx pre-mRNA. We have identified a gene, female-lethal-2-d fl(2) d, whose function is required for the female-specific splicing of Sxl pre-mRNA. In this report we analyze whether the gene fl(2)d is also required for the sex-specific splicing of both Tra and Dsx pre-mRNAs. We found that the Sxl protein is not sufficient for the female-specific splicing of Tra pre-mRNA, the fl(2)d function also being necessary. This gene, however, is not required for the female-specific splicing of Dsx pre-mRNA.  相似文献   

19.
We find that the strength of splicing enhancers is determined by the relative activities of the bound serine-arginine (SR)-rich splicing factors, the number of SR proteins within the enhancer complex and the distance between the enhancer and the intron. Remarkably, the splicing activity of the bound SR proteins is directly proportional to the number of RS tetrapeptide sequences within the RS domain. Quantitative analysis of the effects of varying the distance between the enhancer and the intron revealed that the splicing efficiency is directly proportional to the calculated probability of a direct interaction between the enhancer complex and the 3' splice site. These data are consistent with a model in which splicing enhancers function by increasing the local concentration of SR proteins in the vicinity of the nearby intron through RNA looping.  相似文献   

20.
The pre-mRNA splicing factor Prp31p was identified in a screen of temperature-sensitive yeast strains for those exhibiting a splicing defect upon shift to the non- permissive temperature. The wild-type PRP31 gene was cloned and shown to be essential for cell viability. The PRP31 gene is predicted to encode a 60 kDa polypeptide. No similarities with other known splicing factors or motifs indicative of protein-protein or RNA-protein interaction domains are discernible in the predicted amino acid sequence. A PRP31 allele bearing a triple repeat of the hemagglutinin epitope has been generated. The tagged protein is functional in vivo and a single polypeptide species of the predicted size was detected by Western analysis with proteins from yeast cell extracts. Functional Prp31p is required for the processing of pre-mRNA species both in vivo and in vitro, indicating that the protein is directly involved in the splicing pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号