首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A BiCMOS logic circuit applicable to sub-2-V digital circuits has been developed. A transiently saturated full-swing BiCMOS (TS-FS-BiCMOS) logic circuit operates twice as fast as CMOS at 1.5-V supply. A newly developed transient-saturation technique, with which bipolar transistors saturate only during switching periods, is the key to sub-2-V operation because a high-speed full-swing operation is achieved to remove the voltage loss due to the base-emitter turn-on voltage. Both small load dependence and small fan-in dependence of gate delay time are attained with this technique. A two-input gate fabricated with 0.3-μm BiCMOS technology verifies the performance advantage of TS-FS-BiCMOS over other BiCMOS circuits and CMOS at sub 2-V supply  相似文献   

2.
A BiCMOS logic circuit with very small input capacitance has been developed, which operates at low supply voltages. A High-beta BiCMOS (Hβ-BiCMOS) gate circuit which fully utilizes the bipolar transistor features achieves 10 times the speed of a CMOS gate circuit with the same input capacitance and operating at 3.3 V supply voltage. In order to lower the minimum supply voltage of Hβ-BiCMOS, a BiCMOS circuit configuration using a charge pump to pull up the output high level of the BiCMOS gate circuit is proposed. By introducing a BiCMOS charge pump, Hβ-BiCMOS achieves very high speed operation at sub-2.0 V supply voltage. It has also been demonstrated that only a very small number of charge pump circuits are required to drive a large number of Hβ-BiCMOS gate circuits  相似文献   

3.
A low voltage full-swing BiCMOS bootstrapping technique that allows the design of BiCMOS logic circuits at supply voltages down to 1.5 V is presented. This is the first 1.5-V design technique that does not require complementary bipolar devices. The technique is shown to have significant advantages over existing low voltage BiCMOS logic designs in sub-3 V operation. Inverter gates fabricated using a 0.8-μm technology were operated at 150 MHz with a supply voltage of 1.5 V. Implementation of this technique on dynamic logic is also demonstrated and experimental results match closely with simulation  相似文献   

4.
This paper presents a 1.5 V full-swing BiCMOS dynamic logic gate circuit, based on a dynamic pull-down BiPMOS configuration, suitable for VLSI using low-voltage BiCMOS technology. With an output load of 0.2 pf, the 1.5 V full-swing BiCMOS dynamic logic gate circuit shows a more than 1.8 times improvement in speed as compared to the CMOS static one  相似文献   

5.
This paper presents novel low-voltage dynamic BiCMOS logic gates and an improved carry look-ahead (CLA) circuit with carry skip using these new dynamic BiCMOS topologies. The well-known “MOS clock feedthrough effect” is used to achieve full swing with substantially reduced low-to-high evaluation delay in the logic gates, thus, resulting in reduced carry propagation/bypass delay in the cascaded CLA array. Simulations at clocking frequency of 100 MHz, using 2-μm BiCMOS process parameters and supply voltage in the range of 2-4 V displays lower gate delay and lower power dissipation compared to other recent dynamic BiCMOS logic topologies. The circuit has no dc power dissipation, race, or charge redistribution problems. An 8-b CLA with 5-b carry skip was achieved in 2.917 ns. This speed is significantly higher than other recent dynamic BiCMOS CLA designs. In addition, the new CLA circuit is more compact compared to previous dynamic BiCMOS CLA designs. A tiny chip was fabricated using the MOSIS Orbit Analog 2-μm V-well CMOS process for the experimental verification of the new low-voltage dynamic BiCMOS topologies  相似文献   

6.
With the anticipated growth of BiCMOS technology for high-performance ASIC design, the issue of testing takes on great significance. This paper addresses the testing of BiCMOS logic circuits. Since many different implementations of BiCMOS gates have been proposed, four representative ones are studied. The adequacy of stuck-at, quiescent current, and delay testing are examined based on circuit level faults. It is demonstrated that a large portion of the defects cannot be detected by common stuck-at or quiescent current tests since they manifest themselves as delay faults. By using the results presented, the test methodologies and the logic families can be ranked based on fault coverage. This ranking can then be used to help decide which BiCMOS solution is proper for a given application  相似文献   

7.
The authors present a BiCMOS dynamic multiplier, which is free from race and charge-sharing problems, using Wallace tree reduction architecture and 1.5-V full-swing BiCMOS dynamic logic circuit. Based on a 1-μm BiCMOS technology, a 1.5-V 8×8 multiplier designed, shows a 2.3× improvement in speed as compared to the CMOS static one  相似文献   

8.
This paper proposes a BiCMOS wired-OR logic for high-speed multiple input logic gates. The logic utilizes the bipolar wired-OR to circumvent the use of a series connection of MOS transistors. The BiCMOS wired-OR logic was found to be the fastest compared with such conventional gates as CMOS NOR, BiCMOS multiemitter logic and CMOS wired-NOR logic, when the number of inputs was more than four and the supply voltage was 3.3 V. The BiCMOS wired-OR logic was also determined to be the fastest of the four when the fan-out number was below 20 and the number of inputs was eight. In addition, the speed was more than twice as faster when the fan-out number was less than 10. The BiCMOS wired-OR logic was applied to a 64-b 2-stage carry look-ahead adder, and was fabricated with a 0.5-μm BiCMOS process technology. A critical path delay time of 3.1 ns from an input to a sum output was obtained at the supply voltage of 3.3 V. This is 35% faster than that of conventional BiCMOS adders  相似文献   

9.
A BiCMOS circuit technology featured by a novel bit-line sense amplifier has been developed. The bit-line sense amplifier is composed of a BiCMOS differential amplifier, the impedance-converting means featured by the CMOS current mirror circuit or the clocked CMOS inverter between the bit line and the base node of the BiCMOS differential amplifier, and a conventional CMOS flip-flop. This technology can reduce the access time to half that of a conventional CMOS DRAM access time. Applied to a 1-kb DRAM test chip, a new BiCMOS circuit technology was successfully verified. Furthermore, the sensitivity and area penalty of the new BiCMOS bit-line sense amplifier and future applications to megabit DRAMs are discussed  相似文献   

10.
A 45-Gb/s BiCMOS decision circuit operating from a 2.5-V supply is reported. The full-rate retiming flip-flop operates from the lowest supply voltage of any silicon-based flip-flop demonstrated to date at this speed. MOS and SiGe heterojunction-bipolar-transistor (HBT) current-mode logic families are compared. Capitalizing on the best features of both families, a true BiCMOS logic topology is presented that allows for operation from lower supply voltages than pure HBT implementations without compromising speed. The topology, based on a BiCMOS cascode, can also be applied to a number of millimeter-wave (mm-wave) circuits. In addition to the retiming flip-flop, the decision circuit includes a broadband transimpedance preamplifier to improve sensitivity, a tuned 45-GHz clock buffer, and a 50-/spl Omega/ output driver. The first mm-wave transformer is employed along the clock path to perform single-ended-to-differential conversion. The entire circuit, which is implemented in a production 130-nm BiCMOS process with 150-GHz f/sub T/ SiGe HBT, consumes 288 mW from a 2.5-V supply, including only 58 mW from the flip-flop.  相似文献   

11.
We present a monostable-bistable transition logic element (MOBILE) based on the negative-differential-resistance (NDR) circuit. In particular, this circuit can be completely implemented using the standard BiCMOS process. A traditional MOBILE using two resonant tunneling diodes (RTD) connected in series is a functional logic circuit. The fabrication of RTD is utilized in the complicated molecular-beam-epitaxy (MBE) system. However, we present a MOBILE circuit that is completely made of standard Si-based metal-oxide-semiconductor field effect transistors and SiGe-based heterojunction bipolar transistors. By suitably determining the control voltages and input conditions, we can obtain the operation of the inverter, AND and OR logic gates. We also demonstrate the latch characteristic of this MOBILE circuit. This logic circuit is fabricated using the standard 0.35 μm BiCMOS process without the need for the MBE system.  相似文献   

12.
New high-speed low-power BiCMOS nonthreshold logic (BNTL) circuits are presented. These circuits offers a built-in CMOS and bipolar level conversion and are suitable for reduced power supply voltage. A 4-b carry lookahead generator (CLG) circuit is designed in BNTL, ECL, and CMOS using 0.8-μm BiCMOS technology. Circuit simulations show that this new logic provides speed comparable to or better than that provided by emitter-coupled logic (ECL) for lower power dissipation  相似文献   

13.
BiCMOS circuit technology for a high-speed and large-capacity ECL-compatible static RAM (SRAM) is described. To obtain high-speed and low-power operation, a decoder with a pre-main decode configuration having an ECL-interface circuit and a word driver with BiCMOS inverter are proposed. A BiCMOS multiplexer with a single emitter-follower driver is also proposed. An optimization method for memory cell array configuration is presented that minimizes the total delay time and the total power dissipation of SRAMs. Circuit simulation results show that a 64-kbit ECL-compatible SRAM with an access time of less than 7 ns and a power dissipation of less than 1 W is obtainable  相似文献   

14.
SiGe BiCMOS technology for RF circuit applications   总被引:4,自引:0,他引:4  
SiGe BiCMOS is reviewed with focus on today's production 0.18-/spl mu/m technology at f/sub T//f/sub MAX/ of 150/200 GHz and future technology where device scaling is bringing about higher f/sub T//f/sub MAX/, as well as lower power consumption, noise figure, and improved large-signal performance at higher levels of integration. High levels of radio frequency (RF) integration are enabled by the availability of a number of active and passive modules described in this paper including high voltage and high-power devices, complementary PNPs, high quality MIM capacitors, and inductors. Key RF circuit results highlighting the advantages of SiGe BiCMOS in addressing today's RF IC market are also discussed both for applications at modest frequencies (1 to 10 GHz) as well as for emerging applications at higher frequencies (20 to >100 GHz).  相似文献   

15.
A new active-pull-down nonthreshold logic (APD-NTL) BiCMOS circuit is presented and its performance has been evaluated and compared to that of standard NTL gate. The circuit utilizes an NMOS active-pull-down emitter-follower stage. A first-order analysis has been conducted to demonstrate the NMOS-APD concept. Simulation results based on 0.6 μm BiCMOS technology indicate that at a power consumption of 1 mW/gate, the APD-NTL circuit offers 4× improvement in the load driving capability and 3.4× improvement in the speed compared to conventional NTL circuits for a load of 1 pF/gate and a logic swing of 800 mV  相似文献   

16.
Bellaouar  A. Elmasry  M.I. 《Electronics letters》1990,26(19):1555-1556
Novel merged BiCMOS circuit structures are presented. They offer an area saving of 20-30% compared with conventional BiCMOS structures. The DC and the transient performance of the merged structures are verified using the two-dimensional PISCES-IIB device simulator.<>  相似文献   

17.
Novel high speed BiCMOS circuits including ECL/CMOS, CMOS/ECL interface circuits and a BiCMOS sense amplifier are presented. A generic 0.8 μm complementary BiCMOS technology has been used in the circuit design. Circuit simulations show superior performance of the novel circuits over conventional designs. The time delays of the proposed ECL/CMOS interface circuits, the dynamic reference voltage CMOS/ECL interface circuit and the BiCMOS sense amplifier are improved by 20, 250, and 60%, respectively. All the proposed circuits maintain speed advantage until the supply voltage is scaled down to 3.3 V  相似文献   

18.
New high-speed BiCMOS current mode logic (BCML) circuits for fast carry propagation and generation are described. These circuits are suitable for reduced supply voltage of 3.3-V. A 32-b BiCMOS carry select adder (CSA) is designed using 0.5-μm BiCMOS technology. The BCML circuits are used for the correct carry path for high-speed operation while the rest of the adder is implemented in CMOS to achieve high density and low power dissipation. Simulation results show that the BiCMOS CSA outperforms emitter coupled logic (ECL) and CMOS adders  相似文献   

19.
This paper presents results of a comprehensive comparative study of six bipolar complementary metal-oxide-semiconductor (BiCMOS) noncomplementary logic design styles and two CMOS logic styles for low-voltage, low-power operation. These logic styles have been compared for switching power consumption and power efficiency (power-delay product). The examination offers two alternative approaches never used in other comparative studies. First, all BiCMOS-based styles are compared to low-power CMOS styles as opposed to a single conventional static CMOS style. Second, a low-power methodology has been used as opposed to performance methodology referred to in the previous logic comparisons. The styles examined are bootstrapped BiCMOS, bootstrapped full-swing BiCMOS, bootstrapped bipolar CMOS, Seng-Rofail's bootstrapped BiCMOS, modified full-swing BiCMOS, dynamic full-swing BiCMOS, double pass-transistor CMOS, and inverter-based CMOS. These design styles have been compared at various power supply voltages (0.9-3 V), with various output load capacitances (0.1-1 pF) at the frequency 50 MHz and temperature 27°C. The results clearly show which logic style is the most beneficial for which specific conditions  相似文献   

20.
A simple BiCMOS configuration employing the source-well tie PMOS/n-p-n pull-down combination is proposed for low-voltage, high-performance operations. The improved BiCMOS gate delay time over that of the NMOS/n-p-n (conventional) BiCMOS gate is confirmed by means of inverter simulations and measured ring oscillator data. The source-well tie PMOS/n-p-n BiCMOS gate outperforms its conventional BiCMOS counterpart in the low-voltage supply range, at both high and low temperatures. A critical speed path from the 68030 internal circuit is used as a benchmark for the proposed BiCMOS design technique. The measured propagation delay of the BiCMOS speed path is faster than its CMOS counterpart down to 2.3 V supply voltage at -10°C and sub-2 V at 110°C  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号