首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于形变模型的图像分割技术是一种有效的图像分割方法,其中形变模型外力的设计是形变模型中重要的研究方向。本文介绍了基于形变模型图像分割中几种典型的形变外力:高斯势力、距离势力、梯度矢量流(GVF),给出了静电力(electrostaticforce)形变模型的能量函数和力的平衡方程,并对不同外力场进行了比较。与传统的外力相比,静电力具有更加清晰的物理意义、实现简单,能够避免轮廓曲线陷于噪声点和伪边界,由于其具有更大的外力作用范围以及更强的收敛到图像凹陷处的能力,能够对图像进行可靠的分割。  相似文献   

2.
We propose an algorithm based on dissipative particle dynamics (DPD) for simulations of conducting fluids in the presence of an electric field. In this model, the electrostatic equations are solved in each DPD time step to determine the charge density at the fluid surfaces. These surface charges are distributed on a thin layer of fluid particles near the interface, and the corresponding interfacial electric forces are added to other DPD forces. The algorithm is applied to the electrospinning process at the Taylor cone formation stage. It is shown that, when the applied voltage is sufficiently high, the algorithm captures the formation of a Taylor cone with analytical apex angle 98.6°. Our results demonstrate the potential of the presented DPD algorithm for simulating two-phase problems in the presence of an electric field with non-periodic boundary conditions.  相似文献   

3.
In this paper, we present a new model for deformations of shapes. A pseudo-likelihood is based on the statistical distribution of the gradient vector field of the gray level. The prior distribution is based on the Probabilistic Principal Component Analysis (PPCA). We also propose a new model based on mixtures of PPCA that is useful in the case of greater variability in the shape. A criterion of global or local object specificity based on a preliminary color segmentation of the image, is included into the model. The localization of a shape in an image is then viewed as minimizing the corresponding Gibbs field. We use the Exploration/Selection (E/S) stochastic algorithm in order to find the optimal deformation. This yields a new unsupervised statistical method for localization of shapes. In order to estimate the statistical parameters for the gradient vector field of the gray level, we use an Iterative Conditional Estimation (ICE) procedure. The color segmentation of the image can be computed with an Exploration/Selection/Estimation (ESE) procedure.  相似文献   

4.
先验形状参数活动轮廓模型是一种抗噪声干扰稳定的图像分割方法.它具有对弱边缘、凹区域进行分割的能力,同时有较大的边缘捕捉范围.通过引入一种非距离性的先验形状力场,构建一种新的能反映先验形状的参数活动轮廓模型.新的先验形状活动轮廓模型避免了曲线之间距离的计算,减少了模型的复杂性.新的方法可以较好地解决传统型参数活动轮廓模型的一些本质缺陷.实验对带噪声且为弱边缘的医学CT图像和超声图像进行分割能得到理想的边缘轮廓.  相似文献   

5.
We present a method for segmenting and estimating the shape of 3D objects from range data. The technique uses model views, or aspects, to constrain the fitting of deformable models to range data. Based on an initial region segmentation of a range image, regions are grouped into aspects corresponding to the volumetric parts that make up an object. The qualitative segmentation of the range image into a set of volumetric parts not only captures the coarse shape of the parts, but qualitatively encodes the orientation of each part through its aspect. Knowledge of a part's coarse shape, its orientation, as well as the mapping between the faces in its aspect and the surfaces on the part provides strong constraints on the fitting of a deformable model (supporting both global and local deformations) to the data. Unlike previous work in physics-based deformable model recovery from range data, the technique does not require presegmented data. Furthermore, occlusion is handled at segmentation time and does not complicate the fitting process, as only 3D points known to belong to a part participate in the fitting of a model to the part. We present the approach in detail and apply it to the recovery of objects from range data  相似文献   

6.
In this paper, we make two contributions to the field of level set based image segmentation. Firstly, we propose shape dissimilarity measures on the space of level set functions which are analytically invariant under the action of certain transformation groups. The invariance is obtained by an intrinsic registration of the evolving level set function. In contrast to existing approaches to invariance in the level set framework, this closed-form solution removes the need to iteratively optimize explicit pose parameters. The resulting shape gradient is more accurate in that it takes into account the effect of boundary variation on the object’s pose. Secondly, based on these invariant shape dissimilarity measures, we propose a statistical shape prior which allows to accurately encode multiple fairly distinct training shapes. This prior constitutes an extension of kernel density estimators to the level set domain. In contrast to the commonly employed Gaussian distribution, such nonparametric density estimators are suited to model aribtrary distributions. We demonstrate the advantages of this multi-modal shape prior applied to the segmentation and tracking of a partially occluded walking person in a video sequence, and on the segmentation of the left ventricle in cardiac ultrasound images. We give quantitative results on segmentation accuracy and on the dependency of segmentation results on the number of training shapes. Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users.  相似文献   

7.
8.
MAC: magnetostatic active contour model   总被引:1,自引:0,他引:1  
We propose an active contour model using an external force field that is based on magnetostatics and hypothesized magnetic interactions between the active contour and object boundaries. The major contribution of the method is that the interaction of its forces can greatly improve the active contour in capturing complex geometries and dealing with difficult initializations, weak edges and broken boundaries. The proposed method is shown to achieve significant improvements when compared against six well-known and state-of-the-art shape recovery methods, including the geodesic snake, the generalized version of GVF snake, the combined geodesic and GVF snake, and the charged particle model.  相似文献   

9.
Multiscale Active Contours   总被引:1,自引:0,他引:1  
We propose a new multiscale image segmentation model, based on the active contour/snake model and the Polyakov action. The concept of scale, general issue in physics and signal processing, is introduced in the active contour model, which is a well-known image segmentation model that consists of evolving a contour in images toward the boundaries of objects. The Polyakov action, introduced in image processing by Sochen-Kimmel-Malladi in Sochen et al. (1998), provides an efficient mathematical framework to define a multiscale segmentation model because it generalizes the concept of harmonic maps embedded in higher-dimensional Riemannian manifolds such as multiscale images. Our multiscale segmentation model, unlike classical multiscale segmentations which work scale by scale to speed up the segmentation process, uses all scales simultaneously, i.e. the whole scale space, to introduce the geometry of multiscale images in the segmentation process. The extracted multiscale structures will be useful to efficiently improve the robustness and the performance of standard shape analysis techniques such as shape recognition and shape registration. Another advantage of our method is to use not only the Gaussian scale space but also many other multiscale spaces such as the Perona-Malik scale space, the curvature scale space or the Beltrami scale space. Finally, this multiscale segmentation technique is coupled with a multiscale edge detecting function based on the gradient vector flow model, which is able to extract convex and concave object boundaries independent of the initial condition. We apply our multiscale segmentation model on a synthetic image and a medical image.  相似文献   

10.
We address the problem of object detection and segmentation using global holistic properties of object shape. Global shape representations are highly susceptible to clutter inevitably present in realistic images, and thus can be applied robustly only using a precise segmentation of the object. To this end, we propose a figure/ground segmentation method for extraction of image regions that resemble the global properties of a model boundary structure and are perceptually salient. Our shape representation, called the chordiogram, is based on geometric relationships of object boundary edges, while the perceptual saliency cues we use favor coherent regions distinct from the background. We formulate the segmentation problem as an integer quadratic program and use a semidefinite programming relaxation to solve it. The obtained solutions provide a segmentation of the object as well as a detection score used for object recognition. Our single-step approach achieves state-of-the-art performance on several object detection and segmentation benchmarks.  相似文献   

11.
We present an algorithm that performs image-based queries within the domain of tree taxonomy. As such, it serves as an example relevant to many other potential applications within the field of biodiversity and photo-identification. Unsupervised matching results are produced through a chain of computer vision and image processing techniques, including segmentation and automatic shape matching. The matching itself is based on a nearest neighbours search in an appropriate feature space. Finally, we briefly report on our efforts to set up a webservice to allow the general public to perform such queries online.  相似文献   

12.
Coupled electrostatic and mechanical FEA of a micromotor   总被引:6,自引:0,他引:6  
The electrostatic forces occurring in a novel double stator axial-drive variable capacitance micromotor (VCM) are studied as a function of rotor-stator overlap, applied voltage, rotor support morphology, and rotor thickness. Analytical equations are developed using parallel plate assumptions, and results are compared with those obtained with 3D Finite Element Analysis (FEA) for tangential, axial, and radial electrostatic forces. The influence of the axial forces on the rotor deflections are studied using iterative indirect coupled field analysis, where the axial forces obtained from the electrostatic 3D FE model are iteratively applied to a structural FE model until stable rotor deflections are obtained. It was found that the axial forces, taking the rotor deflection into account, are twice as high as those obtained by analytical evaluation neglecting rotor deflections and about 70 times higher than the radial forces at a typical operating voltage of 100 V. Inclusion of bushing supports results in lower axial forces and decreases the influence of rotor tilt. Tangential forces likely to be exerted on the rotor at start-up are also examined and compared with analytical predictions. The study demonstrates that FEA provides more accurate results than analytical equations due to the geometry and field simplifications assumed in the latter  相似文献   

13.
Graphical Gaussian shape models and their application to image segmentation   总被引:2,自引:0,他引:2  
This paper presents a novel approach to shape modeling and a model-based image segmentation procedure tailor-made for the proposed shape model. A common way to represent shape is based on so-called key points and leads to shape variables, which are invariant with respect to similarity transformations. We propose a graphical shape model, which relies on a certain conditional independence structure among the shape variables. Most often, it is sufficient to use a sparse underlying graph reflecting both nearby and long-distance key point interactions. Graphical shape models allow for specific shape modeling, since, e.g., for the subclass of decomposable graphical Gaussian models both model selection procedures and explicit parameter estimates are available. A further prerequisite to a successful application of graphical shape models in image analysis is provided by the "toolbox" of Markov chain Monte Carlo methods offering highly flexible and effective methods for the exploration of a specified distribution. For Bayesian image segmentation based on a graphical Gaussian shape model, we suggest applying a hybrid approach composed of the well-known Gibbs sampler and the more recent slice sampler. Shape modeling as well as image analysis are demonstrated for the segmentation of vertebrae from two-dimensional slices of computer tomography images.  相似文献   

14.
肝脏分割是计算机辅助肝脏疾病诊断的重要前提和基础.本文提出了一种新的基于水平集和形状描述符的腹部CT序列图像肝脏自动分割方法.首先,对原始腹部CT序列图像进行预处理,去除与肝脏不相关的器官和组织.然后,利用灰度偏移场,结合周长项、距离正则项和相邻切片肝脏分割结果构建水平集能量函数,实现CT序列肝脏自动分割.为避免分割误...  相似文献   

15.
We propose models of 3D shape which may be viewed as deformable bodies composed of simulated elastic material. In contrast to traditional, purely geometric models of shape, deformable models are active—their shapes change in response to externally applied forces. We develop a deformable model for 3D shape which has a preference for axial symmetry. Symmetry is represented even though the model does not belong to a parametric shape family such as (generalized) cylinders. Rather, a symmetry-seeking property is designed into internal forces that constrain the deformations of the model. We develop a framework for 3D object reconstruction based on symmetry-seeking models. Instances of these models are formed from monocular image data through the action of external forces derived from the data. The forces proposed in this paper deform the model in space so that the shape of its projection into the image plane is consistent with the 2D silhouette of an object of interest. The effectiveness of our approach is demonstrated using natural images.  相似文献   

16.
In this article we describe an application of active contour model for the segmentation of 3D histo-pathological images. The 3D images of a thick tissue specimen are obtained as a stack of optical sections using confocal laser beam scanning microscope (CLSM). We have applied noise reduction and feature enhancement methods so that a smooth and slowly varying potential surface is obtained for proper convergence. To increase the capture range of the potential surface, we use a combination of distance potential and the diffused gradient potential as external forces. It has been shown that the region-based information obtained from low-level segmentation can be applied to reduce the adverse influence of the neighbouring nucleus having a strong boundary feature. We have also shown that, by increasing the axial resolution of the image stack, we can automatically propagate the optimum active contour of one image slice to its neighbouring image slices as an appropriate initial model. Results on images of prostate tissue section are presented.  相似文献   

17.
We propose to formulate point distribution model in terms of centripetal-parameterized Catmull–Rom spline, so that the model-based segmentation is augmented to permit quick edit, and the consequent shape is independent of scale. We train the model in a fashion similar to active shape model, but with fewer salient/landmark points. We use gradient vector flow field as the external force field to drive the segmentation, but we did not adopt the procedures panned out by Cootes et al. to update a shape. Instead, we transform the shape back and forth between model scale and image scale to get the shape converged to the object of interest. To test the method, we turned the solution into an automated algorithm to segment lung on chest radiographs, and achieved an average overlap of 0.879. With edit, the average overlap increased to 0.945, with a minimum of 0.925. The method can be applied on a variety of images, as illustrated in Appendix C. The source code of the algorithm and the demo video can be located at http://jenh.co/2014/01/09/active-spline-models/.  相似文献   

18.
Some innovative methods for image segmentation inspired by physical world are presented in recent years. Aiming to find homogeneous regions and latent semantic information, the paper presents a novel image segmentation method based on image data field. Image data field, developed by simulating the short-range nuclear forces field theory in the physical world, can effectively represent the spatial interactions of neighborhood pixels. Then, the homogeneous regions are characterized by maximum tolerance classes, which induced by homogeneous attraction relation comparing the contributions of potential values in image data field. More specifically, the proposed method mainly focuses on the images with uneven lighting conditions. Compared with the existing relative methods on a variety of images, the experimental results suggest that the presented method is efficient and effective.  相似文献   

19.
Recovering articulated shape and motion, especially human body motion, from video is a challenging problem with a wide range of applications in medical study, sport analysis and animation, etc. Previous work on articulated motion recovery generally requires prior knowledge of the kinematic chain and usually does not concern the recovery of the articulated shape. The non-rigidity of some articulated part, e.g. human body motion with nonrigid facial motion, is completely ignored. We propose a factorization-based approach to recover the shape, motion and kinematic chain of an articulated object with nonrigid parts altogether directly from video sequences under a unified framework. The proposed approach is based on our modeling of the articulated non-rigid motion as a set of intersecting motion subspaces. A motion subspace is the linear subspace of the trajectories of an object. It can model a rigid or non-rigid motion. The intersection of two motion subspaces of linked parts models the motion of an articulated joint or axis. Our approach consists of algorithms for motion segmentation, kinematic chain building, and shape recovery. It handles outliers and can be automated. We test our approach through synthetic and real experiments and demonstrate how to recover articulated structure with non-rigid parts via a single-view camera without prior knowledge of its kinematic chain.  相似文献   

20.
目的 触摸触觉设备感知物体时,需要实现视觉-力触觉同步反馈,其中图像-力触觉反馈难点在于再现更真实的纹理触感的触觉渲染过程。本文提出了一种基于图像局部纹理特征的静电力触觉渲染模型,实现了更加清晰、触感真实的图像纹理的静电力触觉反馈。方法 首先,采用局部傅里叶变换方法强化局部纹理特征,提取傅里叶变换系数分离出表征形状和局部纹理、边缘的频域分量。其次,对局部纹理特征进行力触觉渲染,建立局部纹理特征与驱动信号的映射模型,采用比例模型将局部纹理特征值转化为同等级的静电力表达。最后,根据静电力与驱动信号的心理学模型,由局部纹理特征控制不同驱动信号的输出产生静电力触觉。结果 进行纹理触觉对比感知实验验证算法有效性,62.5%的实验参与者偏爱基于图像局部纹理的触觉渲染算法反馈的纹理触感,本文算法可以模拟多种图像的纹理、边缘的触感。结论 算法在频域分离图像局部纹理、边缘和形状特征,建立纹理-力触觉渲染模型,针对大多数图片可以有效地增强纹理触感,提升触觉再现交互技术的沉浸感。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号