首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The uniform layered LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion batteries was prepared by using (Ni1/3Co1/3Mn1/3)C2O4 as precursor synthesized via oxalate co-precipitation method in air. The effects of calcination temperature and time on the structure and electrochemical properties of the LiNi1/3Co1/3Mn1/3O2 were systemically studied. XRD results revealed that the optimal calcination conditions to prepare the layered LiNi1/3Co1/3Mn1/3O2 were 950°C for 15 h. Electrochemical measurement showed that the sample prepared under the such conditions has the highest initial discharge capacity of 160.8 mAh/g and the smallest irreversible capacity loss of 13.5% as well as stable cycling performance at a constant current density of 30 mA/g between 2.5 and 4.3 V versus Li at room temperature.  相似文献   

2.
以共沉淀法制备的过渡金属氢氧化物前驱体合成锂离子电池层状正极材料Li[Ni1/3Co1/3Mn1/3]O2。考察氨与过渡金属阳离子的配位效应对Li[Ni1/3Co1/3Mn1/3]O2材料的结构和电化学性能的影响。SEM分析结果表明,当NH3·H2O与过渡金属阳离子的总摩尔比为2.7:1时,获得了分布均一的颗粒为过渡金属氢氧化物共沉淀,合成的Li[Ni1/3Co1/3Mn1/3]O2材料的平均粒径约为500nm,振实密度接近2.37g/cm3,接近商品化的LiCoO2正极材料的振实密度。XRD分析结果表明,合成的Li[Ni1/3Co1/3Mn1/3]O2材料具有六角晶格层状结构。Li/Li[Ni1/3Co1/3Mn1/3]O2电池在2.8-4.5V电压范围内的0.1C倍率测试结果表明,首次放电容量达181.5mA·h/g,0.5C倍率循环50次后的放电容量为170.6mA·h/g。  相似文献   

3.
Using oxalic acid and stoichiometrically mixed solution of NiCl2, CoCl2, and MnCl2 as starting materials, the triple oxalate precursor of nickel, cobalt, and manganese was synthesized by liquid-phase co-precipitation method. And then the LiNi1/3Co1/3Mn1/3O2 cathode materials for Li-ion battery were prepared from the precursor and LiOH-H2O by solid-state reaction. The precursor and LiNi1/3Co1/3Mn1/3O2 were characterized by chemical analysis, XRD, EDX, SEM and TG-DTA. The results show that the composition of precursor is Ni1/3Co1/3Mn1/3C2O4·2H2O. The product LiNi1/3Co1/3Mn1/3O2, in which nickel, cobalt and manganese are uniformly distributed, is well crystallized with a-NaFeO2 layered structure. Sintering temperature has a remarkable influence on the electrochemical performance of obtained samples. LiNi1/3Co1/3Mn1/3O2 synthesized at 900 ℃ has the best electrochemical properties. At 0.1C rate, its first specific discharge capacity is 159.7 mA·h/g in the voltage range of 2.75-4.30 V and 196.9 mA·h/g in the voltage range of 2.75-4.50 V; at 2C rate, its specific discharge capacity is 121.8 mA·h/g and still 119.7 mA·h/g after 40 cycles. The capacity retention ratio is 98.27%.  相似文献   

4.
5.
将液相共沉淀法制备的Ni0.8Co0.iMn0.1(OH)2与LiOH·H2O混合,固相烧结合成微米级的LiNi0.8Co0.1Mn0.1O2正极材料.XRD谱表明,合成的LiNi0.8Co0.1Mn0.1O2正极材料为典型的α-NaFeO2层状结构,无杂质峰;从SEM像可以看出,产物颗粒为类球形,分散性好,由一次粒子紧密堆积而成,平均粒径为3 μm;电化学测试结果表明,在2.8~4.3 V电压范围内,750℃焙烧15h合成的LiNi0.8Co0.1Mn0.1O2材料的电化学性能最优,0.1C时,其首次放电容量为186.748mA·h/g,分别高于700和800℃时的首次放电容量172.947和180.235mA·h/g.材料在0.5和2C时循环40次后,容量保持率分别为98.32%和88.72%,循环性能良好.  相似文献   

6.
The uniform layered Li(Ni2/8Co3/8Mn3/8)O2, Li(Ni3/8Co2/8Mn3/8)O2, and Li(Ni3/8Co3/8Mn2/8)O2 cathode materials for lithium ion batteries were prepared using the hydroxide co-precipitation method. The effects of calcination temperature and transition metal contents on the structure and electrochemical properties of the Li-Ni-Co-Mn-O were systemically studied. The results of XRD and electrochemical performance measurement show that the ideal preparation conditions were to prepare the Li(Ni3/8Co3/8Mn2/8)O2 cathode material calcined at 900℃ for 10 h. The well-ordered Li(Ni3/8Co3/8Mn2/8)O2 synthesized under the optimal conditions has the I003/I104 ratio of 1.25 and the R value of 0.48 and pedance of 558 Ω after the first cycle. The decrease of Ni content results in the decrease of discharge capacity and the bad cycling perform-ance of the Li-Ni-Co-Mn-O cathode materials, but the decreases of Mn content and Co content to a certain extent can improve the electro-chemical properties of the Li-Ni-Co-Mn-O cathode materials.  相似文献   

7.
In order to improve the cycle and rate performance of LiNi0.5Mn1.5O4, LiCr2YNi0.5–YMn1.5–YO4 (0≤Y≤0.15) particles were synthesized by the sucrose-aided combustion method. The effects of Cr doping in LiNi0.5Mn1.5O4 on the structures and electrochemical properties were investigated. The samples were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), cyclic voltammetry (CV), galvanostatic charge-discharge test and electrochemical impedance spectrum (EIS). The results indicate that the LiCr2YNi0.5–YMn1.5–YO4 possess a spinel structure and small particle size, and LiCr0.2Ni0.4Mn1.4O4 exhibits the best cyclic and rate performance. It can deliver discharge capacities of 143 and 104 mA·h/g at 1C and 10C, respectively, with good capacity retention of 96.5% at 1C after 50 cycles.  相似文献   

8.
Employing Li2CO3, NiO, Co3O4, and MnCO3 powders as starting materials, Li[Ni1/3Co1/3Mn1/3]O2 was synthesized by solid-state reaction method.Various grinding aids were applied during milling in order to optimize the synthesis process.After successive heat treatments at 650 and 950 ℃, the prepared powders were characterized by X-ray diffraction (XRD) analysis, scanning electron microscopy, and transmission electron microscopy.The powders prepared by adding salt (NaCl) as grinding aid exhibit a clear R3m layer structure.The powders by other grinding aids like heptane show some impurity peaks in the XRD pattern.The former powders show a uniform particle size distribution of less than 1 μm average size while the latter shows a wide distribution ranging from 1 to 10 μm.Energy dispersive X-ray (EDX) analysiss show that the ratio of Ni, Co, and Mn content in the powder is approximately 1/3, 1/3, and 1/3, respecively.The EDX data indicate no incorporation of sodium or chlorine into the powders.Charge-discharge tests gave an initial discharge capacity of 160 mAh·g-1 for the powders with NaCl addition while 70 mAh·g-1 for the powders with heptane.  相似文献   

9.
LiNi1/3Co1/3Mn1/3O2(NCM) cathode material containing copper was prepared by co-precipitation method.The material was characterized by X-ray photoelectron spectroscopy(XPS) and galvanostatic cycling.XPS data indicate that surface compositions of the samples containing copper are different from the bare NCM.Copper on surface of particles was enriched,while nickel and lithium content was reduced.The electrochemical performance of NCM was affected by the change of surface compositions.Cycling performance charged to the cutoff voltage of 4.6 V was improved by introducing copper into the material.The effects of copper content on electrochemical behaviors of NCM at 4.5 V were discussed.  相似文献   

10.
Pristine LiNi0.5Mn1.5O4 and Na-doped Li0.95Na0.05Ni0.5Mn1.5O4 cathode materials were synthesized by a simple solid-state method. The effects of Na+ doping on the crystalline structure and electrochemical performance of LiNi0.5Mn1.5O4 cathode material were systematically investigated. The samples were characterized by XRD, SEM, FT-IR, CV, EIS and galvanostatic charge/discharge tests. It is found that both pristine and Na-doped samples exhibit secondary agglomerates composed of well-defined octahedral primary particle, but Na+ doping decreases the primary particle size to certain extent. Na+ doping can effectively inhibit the formation of LixNi1–xO impurity phase, enhance the Ni/Mn disordering degree, decrease the charge-transfer resistance and accelerate the lithium ion diffusion, which are conductive to the rate capability. However, the doped Na+ ions tend to occupy 8a Li sites, which forces equal amounts of Li+ ions to occupy 16d octahedral sites, making the spinel framework less stable, therefore the cycling stability is not improved obviously after Na+ doping.  相似文献   

11.
锂蓄电池正极材料LiV3O8的合成和充放电性能   总被引:2,自引:1,他引:2  
采用一种液相反应的方法合成LiV3O8化合物 ,首先由NH3·H2 O ,LiOH与V2 O5反应合成含有Li和V的反应前驱产物 ,然后在 180℃的真空环境中进行干燥处理 ,最后将此物质在 5 80℃温度下煅烧成最终产物。采用热重分析试验分析了反应的机理。X射线衍射结果显示得到的物质与用传统合成方法得到的LiV3O8化合物的结构相比 ,在 (10 0 )方向上的衍射峰强度降低很多。在室温、恒电流为 3A/m2 条件下进行充放电试验 ,在 1.8~4.0V范围内 ,首次放电容量达到 2 30Ah/kg ,15周后仍能达到 2 10Ah/kg。  相似文献   

12.
1 INTRODUCTIONDue to the high cost of LiCoO2,a commonlyused cathode material in commercial rechargeablelithium-ion batteries , much efforts have been madeto develop cheaper cathode materials than LiCoO2,Li Ni O2and Li MnO2have been studied extensivelyas possible alternatives to LiCoO2[1 4 ]. Stoichio-metric Li Ni O2is knownto be difficult to synthesizeandits multi-phase reaction during electrochemicalcyclingleads to structural degradation,andlayeredLi MnO2has a significant drawback…  相似文献   

13.
报道了炭包覆锂离子电池正极材料LiNi_(1/3)Mn_(1/3)Co_(1/3)O_2的新工艺。炭涂层由前驱体葡萄糖通过微波热解而形成。采用x射线粉末衍射(XRD)、扫描电镜、x射线荧光测试和恒流充放电测试来表征所制备的材料。XRD结果表明,炭包覆没有改变LiNi_(1/3)Mn_(1/3)Co_(1/3)O_2材料的相结构。SEM结果表明,炭包覆的LiNit/3Mnl/3Col/302颗粒表面变得粗糙。充放电测试结果显示,炭包覆的LiNi_(1/3)Mn_(1/3)Co_(1/3)O_2的循环性能与未包覆的相比得到提高。炭包覆的LiNi_(1/3)Mn_(1/3)Co_(1/3)O_2在0.2C倍率下循环50次的容量保持率由84.8%提升到95.5%,且高倍率下材料的容量保持率得到提高。  相似文献   

14.
LiNi0.6Co0.2Mn0.2O2 was prepared from LiOH·H2O and MCO3 (M=Ni, Co, Mn) by co-precipitation and subsequent heating. XRD, SEM and electrochemical measurements were used to examine the structure, morphology and electrochemical characteristics, respectively. LiNi0.6Co0.2Mn0.2O2 samples show excellent electrochemical performances. The optimum sintering temperature and sintering time are 850 °C and 20 h, respectively. The LiNi0.6Co0.2Mn0.2O2 shows the discharge capacity of 148 mA·h/g in the range of 3.0?4.3 V at the first cycle, and the discharge capacity remains 136 mA·h/g after 30 cycles. The carbonate co-precipitation method is suitable for the preparation of LiNi0.6Co0.2Mn0.2O2 cathode materials with good electrochemical performance for lithium ion batteries.  相似文献   

15.
锂离子电池正极材料LiNi1-yAlyO2的制备及性能   总被引:4,自引:1,他引:3  
在高温增加氧气压力的条件下 ,通过固态反应合成了锂离子电池正极材料LiNi1-yAlyO2 。讨论了合成条件对产物的电化学性能的影响 ,得到最佳的反应条件是 :2个恒温阶段的反应时间为 8h和 10h ;氧气压力为0 .2 0MPa ;反应温度 80 0℃ ;反应物Li,Ni,Al之间的摩尔比为 1.1∶0 .95∶0 .0 5。合成出具有晶型完整、电化学性能优良的LiNi0 .95Al0 .0 5O2 产品 ,其放电容量达 182 .3mA·h/g。结果表明 ,Al3 + 的添加对LiNiO2 的结构及电化学性能有较大的改善。  相似文献   

16.
以溶胶前驱体为纺丝液,通过静电纺丝法合成锂离子电池正极材料LiNi1/3Co1/3Mn1/3O2和LiNi3/8Co1/4Mn3/8O2纳米纤维.采用原子力显微镜(AFM)、X射线衍射(XRD)、充放电实验对纳米纤维的形貌、结构和电化学性能进行研究.结果表明,纳米纤维的直径在150~200 nm之间,且具有典型的α-NaFeO2层状结构.LiNi1/3Co1/3Mn1/3O2和LiNi3/8Co1/4Mn3/8O2纳米纤维的首次放电容量均超过170 mAh·g-1,50次循环后容量保持率在90%以上.  相似文献   

17.
通过简单的溶胶凝胶法合成P2型Na2/3Fe1/2Mn1/2O2正极材料并研究煅烧温度对材料结构、形貌和电化学性能的影响.结果表明,在900℃煅烧得到的产物是高结晶度的P2型Na2/3Fe1/2Mn1/2O2化合物且具有六角板状颗粒形貌,颗粒宽度为2~4μm,厚度为200~400 nm.样品以26 mA/g充放电时表现...  相似文献   

18.
以LiOH.H2O、Ni(OH)2和Mn3O4为原料,采用固相法合成锂离子电池正极材料Li[Li0.2Ni0.2Mn0.6]O2。通过X射线衍射(XRD)、扫描电子显微镜(SEM)对所得样品的结构和形貌进行表征,并测试了该材料的倍率性能和高低温性能。结果表明:900℃下烧结10 h后可获得晶粒细小均匀的层状Li[Li0.2Ni0.2Mn0.6]O2材料,并具有良好的电化学性能,放电容量最高可达235.9 mA.h/g;在50℃下测试时该材料的放电容量高达284.4 mA.h/g,并表现出良好的循环性能,其倍率性能和低温性能还有待进一步改善。  相似文献   

19.
A recycling process including separation of electrode materials by ultrasonic treatment, acid leaching, Fe-removing, precipitation of cobalt, nickel, manganese and lithium has been applied successfully to recycle spent lithium-ion batteries and to synthesize LiNi1/3Co1/3Mn1/3O2. When ultrasonic treatment with 2-nitroso-4-methylphenol(NMP) at 40 ℃ for 15 min, the electrode materials are separated completely. Above 99% of Co, Ni, Mn and Li, 95% of Fe in the separated electrodes are acid-leached in the optimized conditions of 2 mol/L H2SO4, 1:2 H2O2:H2SO4 (molar ratio), 70 ℃, 1:10 initial S:L ratio, and l h. 99.5% of Fe and less than 1% of Co, Ni, Mn in the leaching solution can be removed in the conditions of initial pH value 2.0-2.5 adjusted by adding 18% Na2CO3, 90 ℃ and stirring time 3 h. After adjusted to be equal by adding NiSO4, COSO4 and MnSO4 solution, 97.1% of Ni, Co, Mn in the Fe-removing surplus leaching solution can be recovered as Ni1/3Co1/3Mn1/3(OH)2. 94.5% of Li in the surplus filtrate after the deposition of Co, Ni and Mn can be recovered as LiECO3. The LiNi1/3Co1/3Mnl/3O2, prepared from the recovered compounds, is found to have good characteristics of the layered structure and elecrtochemical performance.  相似文献   

20.
以[Ni1/3Co1/3Mn1/3]3O4和氢氧化锂为原料,分别采用球磨法和液相法前处理工艺制备层状正极材料Li[Ni1/3Mn1/3Co1/3]O2。采用X?射线衍射(XRD)、场发射扫描电镜(FESEM)、恒流充放电等手段对材料的物理和电化学性能进行表征。结果表明:采用不同前处理工艺制备出的Li[Ni1/3Mn1/3Co1/3]O2材料在结构、形貌和电化学性能上有较大差异;与球磨处理法制备的材料相比,采用液相法前处理工艺制备的Li[Ni1/3Mn1/3Co1/3]O2不但保持了前驱体较好的球形形貌,同时还具有较好的循环稳定性和倍率性能;该样品在20mA/g电流密度下,首次放电容量为178mA·h/g,50次循环后,容量保持率达98.7%;在1000mA/g电流密度下,样品容量为135mA·h/g。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号