首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three integrated systems of water and municipal solid waste (MSW) management were evaluated regarding their energy use, production and CO2eq emissions:(1) Biogas based aerobic treatment of wastewater and waste solids disposal by landfilling wherein codigesting sludge with MSW and landfill gas capture produce electricity by a turbine and generator.(2) Biogas based wastewater treatment with codigestion of sludge with biodegradable solids combined with incineration of combustible sludge and other solids.(3) Hydrogen-based system replacing landfilling by indirect gasification of organic solids followed by hydrogen fuel cells.There are great differences between CO2eq emissions of biogas and hydrogen-based systems. The first two systems are positive CO2 and methane emitters. Achieving net zero carbon emissions is unlikely. The H2 based system is fully decarbonized and in addition to clean water, energy and negative carbon dioxide emissions it produces valuable commodities such as energy, concentrated hydrogen, fertilizers, oxygen/ozone, and concentrated carbon dioxide.  相似文献   

2.
In this study, electricity generation associated CO2 emissions and fuel-specific CO2 emission factors are calculated based on the IPCC methodology using the data of fossil-fueled power plants that ran between 2001 and 2008 in Turkey. The estimated CO2 emissions from fossil-fueled power plants between 2009 and 2019 are also calculated using the fuel-specific CO2 emission factors and data on the projected generation capacity of the power plants that are planned to be built during this period. Given that the total electricity supply (planned+existing) will not be sufficient to provide the estimated demand between 2011 and 2019, four scenarios based on using different fuel mixtures are developed to overcome this deficiency. The results from these scenarios show that a significant decrease in the amount of CO2 emissions from electricity generation can be achieved if the share of the fossil-fueled power plants is lowered. The Renewable Energy Scenario is found to result in the lowest CO2 emissions between 2009 and 2019. The associated CO2 emissions calculated based on this scenario are approximately 192 million tons lower than that of the Business As Usual Scenario for the estimation period.  相似文献   

3.
4.
The Logarithmic Mean Divisia Index (LMDI) method of complete decomposition is used to examine the role of three factors (electricity production, electricity generation structure and energy intensity of electricity generation) affecting the evolution of CO2 emissions from electricity generation in seven countries. These seven countries together generated 58% of global electricity and they are responsible for more than two-thirds of global CO2 emissions from electricity generation in 2005. The analysis shows production effect as the major factor responsible for rise in CO2 emissions during the period 1990–2005. The generation structure effect also contributed in CO2 emissions increase, although at a slower rate. In contrary, the energy intensity effect is responsible for modest reduction in CO2 emissions during this period. Over the 2005–2030 period, production effect remains the key factor responsible for increase in emissions and energy intensity effect is responsible for decrease in emissions. Unlike in the past, generation structure effect contributes significant decrease in emissions. However, the degree of influence of these factors affecting changes in CO2 emissions vary from country to country. The analysis also shows that there is a potential of efficiency improvement of fossil-fuel-fired power plants and its associated co-benefits among these countries.  相似文献   

5.
Waste management is becoming a crucial issue in modern society owing to rapid urbanization and the increasing generation of municipal solid waste (MSW). This paper evaluates the carbon footprint of the waste management sector to identify direct and indirect carbon emissions, waste recycling carbon emission using a hybrid life cycle assessment and input-output analysis. China and Japan was selected as case study areas to highlight the effects of different industries on waste management. The results show that the life cycle carbon footprints for waste treatment are 59.01 million tons in China and 7.01 million tons in Japan. The gap between these footprints is caused by the different waste management systems and treatment processes used in the two countries. For indirect carbon footprints, China’s material carbon footprint and depreciation carbon footprint are much higher than those of Japan, whereas the purchased electricity and heat carbon footprint in China is half that of Japan. China and Japan have similar direct energy consumption carbon footprints. However, CO2 emissions from MSW treatment processes in China (46.46 million tons) is significantly higher than that in Japan (2.72 million tons). The corresponding effects of waste recycling on CO2 emission reductions are considerable, up to 181.37 million tons for China and 96.76 million tons for Japan. Besides, measures were further proposed for optimizing waste management systems in the two countries. In addition, it is argued that the advanced experience that developed countries have in waste management issues can provide scientific support for waste treatment in developing countries such as China.  相似文献   

6.
This paper proposes a meta-frontier non-radial directional distance function to model energy and CO2 emission performance in electricity generation. This approach allows for the consideration of the group heterogeneity of electricity generation, non-radial slacks, and undesirable outputs simultaneously. We extend several standardized indices to measure total-factor energy efficiency, CO2 emission performance, and technology gaps in electricity generation. We estimate the potential reductions in energy use and CO2 emissions under different technology assumptions. We conduct an empirical analysis of fossil fuel electricity generation in Korea by using the proposed approach. The results indicate that coal-fired power plants show higher levels of total-factor energy efficiency and CO2 emission performance than oil-fired ones. Under the meta-frontier technology assumption, coal-fired power plants show a smaller technology gap than oil-fired ones. This suggests that the Korean government should promote technological innovation to reduce technology gaps for oil-fired plants, thereby improving energy and CO2 emission performance and meeting emission reduction targets in the electricity generation industry.  相似文献   

7.
Depleting fossil fuels and the pollution resulting from their consumption indicate an urgent need for clean and dependable alternatives such as renewable energies. Biomass is a free and abundant source of renewable energy. Municipal solid waste (MSW) as one of the main categories of biomass has always been an issue for metropolitan cities. It has, however, a high potential for biogas production. In this study, the technical and economic aspects of generating electrical power through solid oxide fuel cells (SOFCs) powered by injecting biogas derived from Tehran's MSW, as a case study, are investigated. The main objectives of the current study are to identify the power generation capability of the process and find out if it can result in a competitive energy resource. The total amount of obtainable methane through anaerobic digestion of MSW and then the achievable power generation capacity by using the obtained biogas are computed using the electrochemical relations inside the SOFC. The economic calculations are carried out to estimate the final price of the generated electricity, taking into account the major capital and ongoing costs of the required equipment. The effect of variations of MSW composition on the power generation capability and final electricity price is also studied. Moreover, the application of a gas turbine (GT) with the SOFC as a hybrid SOFC–GT system to recover the produced heat by SOFC and its effect on the power generation capability and the final electricity price are investigated. Results indicate that around 997.3 tons day?1 biomethane can be generated using Tehran's MSW. By using the SOFC, the produced biogas can generate 300 MWAC electrical power with a final cost of Depleting fossil fuels and the pollution resulting from their consumption indicate an urgent need for clean and dependable alternatives such as renewable energies. Biomass is a free and abundant source of renewable energy. Municipal solid waste (MSW) as one of the main categories of biomass has always been an issue for metropolitan cities. It has, however, a high potential for biogas production. In this study, the technical and economic aspects of generating electrical power through solid oxide fuel cells (SOFCs) powered by injecting biogas derived from Tehran's MSW, as a case study, are investigated. The main objectives of the current study are to identify the power generation capability of the process and find out if it can result in a competitive energy resource. The total amount of obtainable methane through anaerobic digestion of MSW and then the achievable power generation capacity by using the obtained biogas are computed using the electrochemical relations inside the SOFC. The economic calculations are carried out to estimate the final price of the generated electricity, taking into account the major capital and ongoing costs of the required equipment. The effect of variations of MSW composition on the power generation capability and final electricity price is also studied. Moreover, the application of a gas turbine (GT) with the SOFC as a hybrid SOFC–GT system to recover the produced heat by SOFC and its effect on the power generation capability and the final electricity price are investigated. Results indicate that around 997.3 tons day?1 biomethane can be generated using Tehran's MSW. By using the SOFC, the produced biogas can generate 300 MWAC electrical power with a final cost of $0.178 kWh?1. By using the hybrid SOFC–GT, the electrical power capacity is increased to 525 MWAC, and the final electricity cost drops to $0.11 kWh?1, which indicates its competitiveness with other common energy resources in the near future, especially by considering different governmental subsidy policies that support renewable energy resources. The considerable environmental benefits of the proposed procedure, from both MSW management and CO2 emission reduction points of view, make it a promising sustainable energy resource for the future. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
This study analyzes how the substitution of fossil fuels for nuclear power due to the shutdown of nuclear power plants after the Tohoku Earthquake affects electricity consumption and greenhouse gas emissions in Japan. Results indicate that Japan generated 4.3 million metric tons (or 0.3%, with a 95% confidence interval) of additional CO2 emissions in 2011 following the earthquake. The increase in CO2 emissions stemmed from the combined effects of decreased electricity consumption due to energy conservation efforts and the substitution of fossil fuels for nuclear power following the Tohoku Earthquake. Results also show considerable spatial variation in the impacts of the earthquake on net CO2 emissions. A majority of the prefectures (40 of 47 prefectures, or 85%) were predicted to experience higher CO2 emissions after the Tohoku Earthquake while the remaining (7 prefectures) were predicted to experience lower CO2 emissions. Our findings suggest that Japan and countries under similar risks may want to reformulate energy policy by emphasizing utilization of diverse power and energy sources, including more renewable energy production and electricity conservation. The policy reform should also consider spatial variation in the combined effects of reduced reliance on nuclear power and increased CO2 conversion factors.  相似文献   

9.
Evaluating carbon dioxide emissions in international trade of China   总被引:3,自引:0,他引:3  
China is the world's largest emitter of carbon dioxide (CO2). As exports account for about one-third of China's GDP, the CO2 emissions are related to not only China's own consumption but also external demand. Using the input–output analysis (IOA), we analyze the embodied CO2 emissions of China's import and export. Our results show that about 3357 million tons CO2 emissions were embodied in the exports and the emissions avoided by imports (EAI) were 2333 million tons in 2005. The average contribution to embodied emission factors by electricity generation was over 35%. And that by cement production was about 20%. It implies that the production-based emissions of China are more than the consumption-based emissions, which is evidence that carbon leakage occurs under the current climate policies and international trade rules. In addition to the call for a new global framework to allocate emission responsibilities, China should make great efforts to improve its energy efficiency, carry out electricity pricing reforms and increase renewable energy. In particular, to use advanced technology in cement production will be helpful to China's CO2 abatement.  相似文献   

10.
Wen-Tien Tsai 《Energy》2011,36(7):4333-4339
Utilizing used lubricants as energy sources has been currently demonstrated to be one of the best available waste management methods. In this regard, used lubricants for use as energy sources in Taiwan thus became popular in recent years. The objective of this study was to present a comprehensive analysis of used lubricant-to-energy in Taiwan, which includes status of lubricant consumption, and used lubricant generation and its recycling (i.e., collection & treatment) management system. It was found that a major market for utilizing used lubricants in Taiwan (over 90%) was reused as fuel oils or auxiliary fuels in the cogeneration system. Under the regulatory authorization of the Waste Management Act and the Petroleum Administration Act, the central competent authorities encouraged the energy-intensive industries in the waste-to-energy through the excess electricity purchase and subsidiary incentives. Based on the certified volume of collected used lubricant and its energy use proportion in 2009, the total energy potential and the environmental benefit of mitigating CO2 emissions in place of fuel oils were preliminarily calculated to be around 9.4 × 102 TJ and 7.3 × 107 kg, respectively.  相似文献   

11.
This study explores the inter-relationships among economy, energy and CO2 emissions of 37 industrial sectors in Taiwan in order to provide insight regarding sustainable development policy making. Grey relation analysis was used to analyse the productivity, aggregate energy consumption, and the use of fuel mix (electricity, coal, oil and gas) in relation to CO2 emission changes. An innovative evaluative index system was devised to explore grey relation grades among economics, energy and environmental quality. Results indicate that a rapid increase in electricity generation during the past 10 years is the main reason for CO2 emission increase in Taiwan. The largest CO2 emitting sectors include iron and steel, transportation, petrochemical materials, commerce and other services. Therefore, it is important to reduce the energy intensity of these sectors by energy conservation, efficiency improvement and adjustment of industrial structure towards high value-added products and services. Economic growth for all industries has a more significant influence, than does total energy consumption, on CO2 emission increase in Taiwan. It is also important to decouple the energy consumption and production to reduce the impacts of CO2 on economic growth. Furthermore, most of the sectors examined had increased CO2 emissions, except for machinery and road transportation. For high energy intensive and CO2 intensive industries, governmental policies for CO2 mitigation should be directed towards low carbon fuels as well as towards enhancement of the demand side management mechanism, without loss of the nation's competitiveness.  相似文献   

12.
Reginald B.H. Tan  David Wijaya  Hsien H. Khoo   《Energy》2010,35(12):4910-4916
This article offers a unique three-stage approach in LCI analysis for generating the environmental profile of electricity generation in Singapore. The first stage focuses on fuels delivered to Singapore, next on electricity generated from various types of power production plants. The third stage integrates the entire life cycle study. The final gate-to-gate results show that the total CO2 emissions from the national grid are 455.6 kg CO2 per MWh without any loss in transmission and 467.0 kg CO2 per MWh with 2.5% losses. The results for the entire cradle-to-gate energy production are: 586.3 kg CO2 per MWh without considering any losses and 601.0 kg CO2 per MWh with 2.5% transmission loss. For the rest of the LCI, the cradle-to-gate results (per MWh) are kg 0.19 CO (carbon monoxide), 0.06 kg N2O (nitrous oxide), 1.94–1.99 kg NOx (nitrogen oxides), 2.94–3.01 kg SOx (sulphur oxides), 0.064–0.066 kg VOC (volatile organic compounds) and 0.078–0.080 kg PM (particulate matters). From gate-to-gate, the results are 0.12 kg CO, 0.0016 kg N2O, 1.42–1.46 kg NOx, 2.56–2.62 kg SOx, 0.033–0.034 kg VOC and 0.067–0.069 kg PM. Emissions of CO2 from energy generation, climate change mitigation and policies for energy security are also discussed.  相似文献   

13.
Four technologies are investigated which produce energy from municipal solid waste (MSW): incineration, gasification, generation of biogas and utilisation in a combined heat and power (CHP) plant, generation of biogas and conversion to transport fuel.Typically the residual component of MSW (non-recyclable, non-organic) is incinerated producing electricity at an efficiency of about 20% and thermal product at an efficiency of about 55%. This is problematic in an Irish context where utilisation of thermal products is not the norm. Gasification produces electricity at an efficiency of about 34%; this would suggest that gasification of the residual component of MSW is more advantageous than incineration where a market for thermal product does not exist. Gasification produces more electricity than incineration, requires a smaller gate fee than incineration and when thermal product is not utilised generates less greenhouse gas per kWh than incineration. Gasification of MSW (a non-homogenous fuel) is, however, not proven at commercial scale.Biogas may be generated by digesting the organic fraction of MSW (OFMSW). The produced biogas may be utilised for CHP production or for transport fuel production as CH4-enriched biogas. When used to produce transport fuel some of the biogas is used in a small CHP unit to meet electricity demand on site. This generates a surplus thermal product.Both biogas technologies require significantly less investment costs than the thermal conversion technologies (incineration and gasification) and have smaller gate fees. Of the four technologies investigated transport fuel production requires the least gate fee. A shortfall of the transport fuel production technology is that only 50% of biogas is available for scrubbing to CH4-enriched biogas.  相似文献   

14.
The share of liquified natural gas (LNG) in the international trade of natural gas (NG) is continually increasing. This presents increasing opportunities to build power plants to generate electricity at LNG regasification terminals rather than wasting the power generation potential of LNG at about −162°C by regasifying it by seawater, ambient air, or by burning NG. Typically, over 5% of the NG received at LNG plants is used to liquify the remaining incoming gaseous NG at environmental conditions. Theoretically, all the energy consumed at LNG liquefaction plants can be recovered at LNG regasification terminals. In this study, the theoretical and practical power generation potential of regasified LNG is investigated by performing energy and exergy analyses. It is shown that up to 0.191 kWh of electric power can be generated during the regasification of LNG per standard m3 of NG regasified. The potential economic gains associated with power generation at LNG regasification facilities are demonstrated by analyzing the 2018 LNG imports of Turkey as a case study and the world. It is shown that the 314 million tons of LNG imported globally in 2018 has the electric power generation potential of 88 billion kWh with a market value of over 10 billion USD. It also has the potential to offset 38 million tons of CO2 emissions.  相似文献   

15.
Previous studies by the authors have shown that energy savings in pulp and paper mills offer opportunities for increased electricity production on‐site or wood fuel export. The energy export implies reductions in CO2 emissions off‐site, where fossil fuel or fossil‐fuel‐based electricity is replaced. To assess this potential and the related profitability for a future situation, four energy market scenarios were used. For a typical Scandinavian mill, the potential for CO2‐emission reductions was 15–140 kton year?1 depending on the scenario and the form of energy export. Extrapolated to all relevant mills in Sweden, the potential was 0.4–3.1 Mton year?1, which is in the order of percent of the Swedish CO2 emissions. Wood fuel export implies larger reduction in CO2 emissions in most scenarios. In contrast, electricity export showed better economy in most of the cases studied; with annual earnings of 5–6 M€, this is an economically robust option. In the market pulp mill investigated, the wood fuel export was in the form of lignin. Lignin could possibly be valued as oil, regarding both price and potential for CO2‐emission reduction, making lignin separation an option with good profitability and large reductions of CO2 emissions. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
Energy recovery from flue gases in thermal treatment plants is an integral part of municipal solid waste (MSW) management for many industrialized nations. Often cogeneration can be employed for both enhancing the plant profitability and increasing the overall energy yield. However, it is normally difficult to justify traditional cogeneration in tropical locations since there is little need for the heat produced. The main objective of this article is to investigate the opportunities and potentials for various types of absorption technologies driven by MSW power plants for providing both electricity and cooling. Results show that cogeneration coupling with thermally driven cooling is sustainably and economically attractive for both electricity and cooling production. The thermally driven cooling provides significant potential to replace electrically driven cooling: such systems are capable of providing cooling output and simultaneously increasing electricity yield (41%). The systems are also capable of reducing the fuel consumption per unit of cooling in comparison with conventional cooling technology: a reduction of more than 1 MWfuel/MWcooling can be met in a small unit. MSW power plant coupled with thermally driven cooling can further reduce CO2 emissions per unit of cooling of around 60% as compared to conventional compression chiller and has short payback period (less than 5 years).  相似文献   

17.
Among the various greenhouse gases associated with climate change, CO2 is the most frequently implicated in global warming. The latest data from Carbon Monitoring for Action (CARMA) shows that the coal-fired power plant in Taichung, Taiwan emitted 39.7 million tons of CO2 in 2007 – the highest of any power plant in the world. Based on statistics from Energy International Administration, the annual CO2 emissions in Taiwan have increased 42% from 1997 until 2006. Taiwan has limited natural resources and relies heavily on imports to meet its energy needs, and the government must take serious measures control energy consumption to reduce CO2 emissions. Because the latest data was from 2009, this study applied the grey forecasting model to estimate future CO2 emissions in Taiwan from 2010 until 2012. Forecasts of CO2 emissions in this study show that the average residual error of the GM(1,1) was below 10%. Overall, the GM(1,1) predicted further increases in CO2 emissions over the next 3 years. Although Taiwan is not a member of the United Nations and is not bound by the Kyoto Protocol, the findings of this study provide a valuable reference with which the Taiwanese government could formulate measures to reduce CO2 emissions by curbing the unnecessary the consumption of energy.  相似文献   

18.
India’s reliance on fossil-fuel based electricity generation has aggravated the problem of high carbon dioxide (CO2) emissions from combustion of fossil fuels, primarily coal, in the country’s energy sector. The objective of this paper is to analyze thermal power generation in India for a four-year period and determine the net generation from thermal power stations and the total and specific CO2 emissions. The installed generating capacity, net generation and CO2 emissions figures for the plants have been compared and large generators, large emitters, fuel types and also plant vintage have been identified. Specific emissions and dates of commissioning of plants have been taken into account for assessing whether specific plants need to be modernized. The focus is to find out areas and stations which are contributing more to the total emissions from all thermal power generating stations in the country and identify the overall trends that are emerging.  相似文献   

19.
This paper analyzes carbon dioxide (CO2) emissions related to energy consumption for electricity generation in four Latin-American countries in the context of the liberalization process. From 1990 to 2006, power plants based on renewable energy sources decreased its share in power installed capacity, and the carbon index defined as CO2 emission by unit of energy for electricity production stayed almost constant for all countries with the exception of Colombia, where the index reduced due to increase in hydroelectricity generation in the last years. The paper also presents a new set of policies to promote renewable energy sources that have been developed in the four countries. The paper concludes that restructuring did not bring about environmental benefits related to a decrease in CO2 emissions because this depend on the existence of committed policies, and dedicated institutional and regulatory frameworks.  相似文献   

20.
This paper assesses the impact of energy-efficient distribution transformers through the implementation of energy efficiency classes, as well as through mandatory standards that remove the worst transformers from the market. Energy-efficient distribution transformers can not only save about 1 % of all the electricity generated but can also save very large investments in power generation and transmission power systems. Technical solutions to reduce energy consumption of transformers are available, but the market penetration of high-efficient transformers is significantly lower than it could be. The paper analyses the main market and regulatory failures and identifies that the introduction of efficiency classes and minimum energy performance standards (MEPS) is the best way to foster energy performance in distribution transformers. Policies and measures supporting energy-efficient distribution transformers around the world are reviewed. The use of Ecodesign methodology do define possible transformer MEPS regulation is discussed for different types of distribution transformers, as well as the associated impacts. Sensitivity analysis in relation to key parameters (load factor and electricity prices) is analyzed. The energy saving potential and the environmental impacts are calculated until the year 2050 in the European Union, as well as at world level. The potential savings in the year 2050 represent about 35 TWh of electricity in Europe, equivalent to about four million tons of reduced CO2 emissions. For the world, the estimated impact in 2050 is about 450 TWh equivalent to about 180 million tons of reduced CO2 emissions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号