首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The development of catalytic processes for pharmaceuticals intermediates is often under severe time-pressure. To cope with this constraint, high throughput experimentation (HTE) methods have been implemented for catalyst finding. In this article, we present the HTE protocols put in place at DSM in the area of enantioselective hydrogenation. They mostly rely on libraries of monodentate chiral phosphoramidites ligands. We applied our instant ligand library technology to solve a real-life case, i.e. the asymmetric hydrogenation of an α-substituted cinnamic acid derivative. This has led to a multi-ton scale process.  相似文献   

2.
Catalytic asymmetric hydrogenation is arguably one of most efficient methods of choice to synthesize a stereogenic center. The time to market pressure and the wide diversity of possible compounds require a flexible and rapid approach to implement technology. The automated synthesis and screening protocol of monodentate ligands, developed at DSM, provides such a technology. Applications of this, so-called, MonoPhosTM ligand library in Rh- and Ir-catalyzed asymmetric hydrogenations have led to cost-effective productions of intermediates for several drugs, such as Aliskiren. A new bulky phosphite ligand has been identified performing particularly well for the asymmetric hydrogenation of the sterically demanding enamide 5.  相似文献   

3.
The combination of Ga(OTf)3 with chiral semi‐crown ligands ( 1a – e ) generates highly effective chiral gallium Lewis acid catalysts for aqueous asymmetric aldol reactions of aromatic silyl enol ethers with aldehydes. A ligand‐acceleration effect was observed. Water is essential for obtaining high diastereoselectivity and enantioselectivity. The p‐phenyl substituent in aromatic silyl enol ether ( 2 h ) plays an important role and increases the enantioselectivity up to 95% ee. Although aliphatic silyl enol ethers provided low enantioselectivities and silylketene acetal is easily hydrolyzed in aqueous alcohol, the aldol reactions of silylketene thioacetal ( 12 ) with aldehydes in the presence of gallium‐Lewis acid catalysts give the β‐hydroxy thioester with reasonable yields and high diastereo‐ (up to 99 : 1) and enantioselectivities (up to 96% ee).  相似文献   

4.
不对称催化氢化反应具有完美的原子经济性和清洁高效等特点,是最受青睐的不对称合成方法之一。C=C、C=O、C=N的不对称加氢反应仍主要依赖过渡金属催化剂。过渡金属催化剂,尤其是铑催化剂,催化碳碳双键的不对称加氢反应仍是一个不断发展的领域。本文对近年来利用铑催化剂催化烯烃进行不对称氢化反应的研究进展进行了综述,着重介绍了铑-双膦配体催化体系催化烯烃不对称加氢反应的催化机理,以及铑催化剂在烯胺、不饱和羧酸及衍生物、烯醇酯和非官能团烯烃不对称氢化中的应用,并通过对现有文献的总结指出了今后铑催化剂催化烯烃氢化反应的研究重点,即:①铑-单膦配体催化烯烃不对称氢化反应的作用机理须待提出;②非官能化底物不对称催化氢化反应的手性配体亟待拓宽。  相似文献   

5.
The monodentate phosphoramidite MonoPhos has been used in the rhodium‐catalysed asymmetric hydrogenation of N‐acetyl‐α‐arylenamides. This ligand is readily available via a one‐step procedure and is air stable. Its Rh(I) complex, which is an effective catalyst precursor for the hydrogenation of dehydroamino acids, also gives high enantioselectivities for this class of substrates. Because of the facile synthesis and stability of MonoPhos, its complex provides a general solution in preparing chiral amine derivatives through asymmetric hydrogenation.  相似文献   

6.
The preparation of chiral compounds in enantiomerically pure form is a challenging goal in modern organic synthesis. The use of chiral metal complex catalysis is a powerful, economically feasible tool for the preparation of optically active organic compounds on both laboratory and industrial scales. In particular, the metals coordinated by one or more chiral phosphorus ligands exhibit amazing enantioselectivity and reactivity. Many chiral phosphorus ligands have been synthesized and used in transition-metal-catalyzed asymmetric reactions in past decades. However, a large number of reactions still lack effective chiral ligands, and the enantioselectivities in many reactions are substrate-dependent. The development of effective chiral phosphorus ligands, especially ligands having novel chiral backbones, is still an important task in the area of asymmetric catalysis. Molecules containing a spirocyclic framework are ubiquitous in nature. The synthesis of molecules with this spiro structure can be traced back to 100 years ago. However, the use of this spirocyclic framework to construct chiral phosphorus ligands is a recent event. This Account outlines the design and synthesis of a new family of chiral spiro phosphorus ligands including spiro diphosphines and spiro monodentate phosphorus ligands with 1,1'-spirobiindane and 9,9'-spirobifluorene backbone and their applications in transition-metal-catalyzed asymmetric hydrogenation and carbon-carbon bond formation reactions. The chiral spiro diphosphine lgands SDP with a 1,1'-spirobiindane backbone and SFDP with a 9,9'-spirobifluorene backbone, and the spiro monophosphorus ligands including phosphoramidites, phosphites, phosphonites, and phospholane with a 1,1'-spirobiindane backbone were synthesized in good yields from enantiomerically pure 1,1'-spirobiindane-7,7'-diol and 9,9'-spirobifluoren-1,1'-diol. The ruthenium complexes of chiral spiro diphosphine ligands proved to be very effective catalysts for asymmetric hydrogenations of ketones, alpha-arylaldehydes and alpha,beta-unsaturated acids. The rhodium complexes of chiral spiro monophosphorus ligands are highly enantioselective for the asymmetric hydrogenations of alpha- and beta-dehydroamino acid derivatives, alpha-arylethenyl acetamides and non- N-acyl enamines. The spiro monophosphorus ligands were demonstrated to be highly efficient for the Rh-catalyzed asymmetric addition of arylboronic acids to aldehydes and N-tosylarylimines, Pd-catalyzed asymmetric allylation of aldehydes with allylic alcohols, Cu-catalyzed asymmetric ring opening reactions with Grignard reagents, and Ni-catalyzed asymmetric hydrovinylation of styrene derivatives with ethylene. The chiral spiro phosphorus ligands show high enantioselectivities for a wide range of transition-metal-catalyzed asymmetric reactions. In most of these transformations, the enantioselectivities of spiro phosphorus ligands are superior to those obtained by using the corresponding phosphorus ligands with other backbones. These results arise from the intriguing chiral inducement of spiro structures of the ligands.  相似文献   

7.
A new class of low‐cost and easy‐to‐prepare monodentate phosphoramidite ligands (CydamPhos) has been developed from readily accessible and cheap trans‐1,2‐diaminocyclohexane as starting material through a three‐step transformation. This type of ligands exhibited excellent enantioseletivities and high activities in rhodium(I)‐catalyzed asymmetric hydrogenations of dehydro‐α‐amino acid methyl esters 9 (ee: 96.2–99.8 %) and acetylenamides 11 (91.8–98.8 %). The remarkable substituent effects exhibited by the ligands on the enantioselective control of the catalysis are rationalized on the basis of molecular structure of the catalyst precursor.  相似文献   

8.
A highly enantioselective (up to 91% ee) rhodium‐catalyzed asymmetric addition of arylboronic acids has been achieved leading to the challenging dihydro‐3‐nitronaphthalenes using one equivalent of phosphoramidite ligand to rhodium catalyst. A concise formal asymmetric synthesis of the dopamine D1 agonist, dihydrexidine was accomplished using the method.  相似文献   

9.
A new kind of dendronized polymeric chiral BINAP ligands has been synthesized and applied to the Ru‐catalyzed asymmetric hydrogenation of simple aryl ketones and 2‐arylacrylic acids. These dendronized poly(Ru‐BINAP) catalysts exhibited high catalytic activity and enantioselectivity, very similar to those obtained with the corresponding parent Ru(BINAP) and the Ru(BINAP)‐cored dendrimers. It was found that the pendant dendrons had a major impact on the solubility and the catalytic properties of the polymeric ligands. These polymeric catalysts could be easily recovered from the reaction solution by using solvent precipitation, and the reused catalyst showed no loss of activity or enantioselectivity.  相似文献   

10.
Chiral iridium complexes based on spiro phosphoramidite ligands are demonstrated to be highly efficient catalysts for the asymmetric hydrogenation of unfunctionalized enamines with an exocyclic double bond. In combination with excess iodine or potassium iodide and under hydrogen pressure, the complex Ir/(Sa,R,R)‐ 3a provides chiral N‐alkyltetrahydroisoquinolines in high yields with up to 98% ee. The L/Ir ratio of 2:1 is crucial for obtaining a high reaction rate and enantioselectivity. A deuterium labeling experiment showed that an inverse isotope effect exists in this reaction. A possible catalytic cycle including an iridium(III) species bearing two monophosphoramidite ligands is also proposed.  相似文献   

11.
The rhodium‐catalyzed asymmetric hydrogenation of several β‐substituted itaconic acid monoesters, using a library of monodentate phosphoramidite and phosphite ligands is described. Two β‐alkyl‐substituted substrates were readily hydrogenated by the rhodium complex Rh(COD)2BF4 in combination with (S)‐PipPhos as a ligand resulting in ees of 99 %. In contrast, the corresponding more hindered β‐aryl‐substituted substrates did not exhibit acceptable enantioselectivities under these conditions. However, the use of a 48‐membered ligand library led to the identification of several suitable ligands for these substrates, resulting in ees of 89–99 %. The resulting optically active succinic acid derivatives are potentially useful building blocks for more elaborate compounds, because of the ability to differentiate between the carboxylic acid and the ester groups on either side of the molecule.  相似文献   

12.
Homochiral catalysts that can effect asymmetric transformations are invaluable in the production of optically active molecules. Researchers are actively pursuing the design of new ligands and organocatalysts by exploiting concepts derived from the application of bifunctional and C(2)-symmetric catalysts. Many homochiral catalysts containing amines, ethers, alcohols, and phosphines as electron-pair donors have been successfully developed. Amine N-oxides are highly polar substances. Despite their pronounced capacity as electron-pair donors, N-oxides have been underutilized in asymmetric reactions; they have only made a visible impact on the field in the preceding decade. Systematic studies have instead largely focused on pyridine- or quinoline-based scaffolds in organosilicon and coordination chemistry. The application of chiral tertiary amine N-oxides has not been widely pursued because of the difficulty of controlling the chirality at the tetrahedral nitrogen of the N-oxide moiety. In this Account, we outline the design of a new family of C(2)-symmetric N,N'-dioxides from readily available chiral amino acids. We then discuss the application of these chiral amine N-oxides as useful metal ligands and organocatalysts for asymmetric reactions. The high nucleophilicity of the oxygen in N-oxides is ideal for organocatalytic reactions that rely on nucleophilic activation of organosilicon reagents. These catalysts have been successfully applied in the asymmetric addition of trimethylsilylcyanide to aldehydes, ketones, aldimines, and ketimines, with good yields and excellent enantioselectivities. Asymmetric organocatalytic chlorination of β-ketoesters with N-chlorosuccinimide has also been achieved through hydrogen bond activation. The molecular framework of these N,N'-dioxides, with their multiple O-donors, also serves as a new tetradentate ligand that can coordinate a range of metal ions, including Cu(I), Cu(II), Ni(II), Mg(II), Fe(II), Co(II), In(III), Sc(III), La(III), Y(III), Nd(III), and others. These versatile metal complexes are efficient catalysts for a variety of asymmetric reactions. Asymmetric cycloadditions have been achieved with these chiral Lewis acid catalysts. We have also found success with asymmetric nucleophilic additions to C═O or C═N bonds; substrates include 3-substituted 2-oxindoles, alkenes, enamides, enecarbamates, diazoacetate esters, nitroalkanes, glycine Schiff bases, and phosphate. Notably, the first catalytic asymmetric Roskamp reaction was realized, which was successful because of the high efficiency of the catalyst. Asymmetric conjugate additions between α,β-unsaturated compounds and nucleophiles such as nitroalkane, malonate, thioglycolate, and indoles have been accomplished. The first asymmetric haloamination of chalcones was discovered, and the reaction proceeded with high regio- and enantioselectivity. In some cases, we were able to reduce the catalyst loading to just 0.01-0.05 mol % while maintaining excellent outcomes. Some particularly interesting phenomena were observed over the course of the research. These include a remarkable amplification of the asymmetry in a sulfa-Michael reaction, as well as the reversal of enantioselectivity after alteration of the central metal or the subunits of the ligand in two other reactions. These unusual results have facilitated a deeper understanding of the catalytic mechanism.  相似文献   

13.
构筑手性金属有机骨架的方法及其在不对称催化中的应用   总被引:1,自引:0,他引:1  
手性金属有机骨架(MOF)具有独特的结构、不对称催化和手性拆分等性能,引起了催化学者的极大重视.系统地介绍了国内外有关手性MOF的合成方法,即:①非手性物质在晶体生长过程中自组装;②使用手性化合物来诱导合成;③通过手性有机基团与金属离子配位将手性成分嵌入金属有机骨架;④表面修饰的方法,第3种方法是最常用的合成手性MOF的方法.重点阐述了近年来手性MOF在不对称催化领域的最新研究成果,希望能为手性MOF研究者设计、合成更优良的手性MOF催化剂提供参考.未来手性MOF催化的主要目标在于合成性能更加高效、稳定的新型手性MOF催化剂,并应用于大规模工业生产中,在温和条件下实现较高的转化数和对映体选择性.  相似文献   

14.
Ceria‐supported ruthenium catalysts (Ru/CeO2) were found to be quite effective for the addition of various carboxylic acids to terminal alkynes, which gave the corresponding enol esters in moderate to high yields. The major products of the reaction were E‐isomers of anti‐Markovnikov adducts. Among the ceria‐supported ruthenium catalysts examined, those prepared using ruthenium precursors with chloride ligands showed high activities. The zirconia‐supported ruthenium catalyst (Ru/ZrO2) showed activity comparable to that of the ceria‐supported catalyst. These catalysts were recyclable without a significant loss of activity, and the leaching of ruthenium species into the liquid phase was negligible after cooling the reaction mixture, which indicates marked superiority of the present solid oxide catalysts to conventional homogeneous catalysts.  相似文献   

15.
Dorta R 《Chimia》2011,65(10):806-812
Homogeneous catalysis is a field of research that has gained central importance in both organic and inorganic chemistry and the use of well-defined ligand systems in the synthesis of transition metal complexes has had an enormous impact on the development of such catalysts. Neutral, two-electron donor ligands based on phosphorous and nitrogen have been tremendously successful as ancillary entities for late-transition metal (LTM) catalysts, whereas ligands based on anionic nitrogen, oxygen and the cyclopentadienyl motif (Cp(-)) have propelled early-transition metal (ETM) catalysis forward. We believe that expanding the ligand families capable of acting as successful entities in metal-mediated reactivity and catalysis is crucial for future discoveries in this field. Research in our group therefore tries to identify new non-chiral and chiral ligands for late-transition metal chemistry that are based on neutral, two-electron carbon and sulfur donor atoms. In particular, we have until now focused on the development of modular, monodentate N-heterocyclic carbene ligands (NHCs) that can serve as a basis for the development of chiral ligand frameworks for the application to asymmetric catalytic transformations. In the second major research project developed over the last six years, we have started an investigation on the use of chelating sulfoxide-based ligands in asymmetric late transition-metal based catalysis.  相似文献   

16.
Enantioselective gold(I) catalysis is receiving a growing level of credit in the field of asymmetric synthesis. After a pioneering work in the mid-1980s the area remained almost silent for several years, until densely substituted diphosphine chiral ligands were disclosed as competent chiral units for gold-catalyzed stereoselective manipulation of unactivated unsaturated hydrocarbons. The chemistry of alkynes, allenes and most recently also alkenes received significant benefits from the latter developments. More recently, ad hoc designed chiral monodentate ligands have risen to prominence in producing robust, highly tunable (electronic and steric) and efficient chiral cationic mononuclear gold species for asymmetric transformations. In this scenario, electron-deficient phosphorus-based (i.e., phosphoramidites, phosphites) but also axially chiral electron-rich carbene ligands deserve particular mention and the corresponding applications will be summarized herein.  相似文献   

17.
We present a new asymmetric synthesis of β‐hydroxycarboxylic acids from ketones, performed by carboxylation using CO2 followed by asymmetric hydrogenation. First, the carboxylation of ketones gives β‐ketocarboxylic acids. The effects of temperature, reaction time, and amount of 1,8‐diazabicyclo[5.4.0]undec‐7‐ene (DBU) promoter on the carboxylation were investigated. The DBU can be recycled. For the second step, the asymmetric hydrogenation of these β‐ketocarboxylic acids, we determined the effect of solvent choice, H2 pressure, and substrate substitution. Hydrogenation yield and enantioselectivity are solvent‐dependent, and the mechanism could proceed through hydrogenation of either the enol or the keto forms of the bound substrate. This synthesis is industrially advantageous due to the limited number of reactants required, their low‐cost, and the potential for recycling unused materials.  相似文献   

18.
Polyethylene glycol (PEG) was found to be an inexpensive, non‐toxic and recyclable reaction medium for ruthenium‐ and rhodium‐catalyzed asymmetric hydrogenation of 2‐arylacrylic acids (Ru‐catalyzed CC bond reduction), enamides (Rh‐catalyzed CC bond reduction), β‐keto esters and simple aromatic ketones (Ru‐catalyzed CO bond reduction). In all cases, high catalytic activities and enantioselectivities have been achieved, which are comparable to those obtained in conventional organic solvent systems. The Ru and Rh catalysts prepared with commercially available chiral diphosphine ligands could be readily recycled by simple extraction, as in the case of ionic liquids, and reused up to nine times without obvious loss of catalytic activity and enantioselectivity. The reduced products were obtained from the extracts in high isolated yields. These results indicate that PEGs as new reaction media are attractive alternatives to room temperature ionic liquids.  相似文献   

19.
Developments in asymmetric hydrogenation from an industrial perspective   总被引:1,自引:0,他引:1  
Examples of developments in asymmetric hydrogenation from various perspectives, in an effort to improve efficiency, are reported. Discussed in this Account are (1) the improved synthesis of BINAP ligands, (2) the design of SEGPHOS ligands for higher enantioselectivity, (3) a new protocol with fewer reaction steps to synthesize beta-aminoesters, and (4) a novel asymmetric hydrogenation mediated by a copper catalyst.  相似文献   

20.
High enantioselectivities (up to 99% ee) have been observed for the catalytic asymmetric hydrogenation of the α‐ketone enol acetates. DuanPhos has been proved to be the most effective ligand for this reaction. The high yield and enantioselectivity of the asymmetric hydrogenation of the α‐ketone enol acetates represents a feasible synthetic route to important pharmaceutical building blocks: α‐hydroxy ketones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号