首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We studied the effects of buspirone and 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT) on duration of immobility in mice in the forced swim test. Buspirone [3-10 mg/kg, intraperitoneally (IP)] potently and dose dependently increased the duration of immobility in mice. In contrast, following a single dose of 8-OH-DPAT (1-3 mg/kg, IP), there was a dose-dependent decrease in the duration of immobility. Pretreatment with the 5-HT synthesis inhibitor p-chlorophenylalanine (200 mg/kg, IP, 3 days before further drug treatment) did not alter the effects of buspirone or 8-OH-DPAT. The increase in the duration of immobility induced by buspirone (3 mg/kg, IP) was blocked by NAN-190 [1-(2-methoxyphenyl)-4-(4-[2-phthalimido]butyl)-piperazine hydrobromide, 1 mg/kg, IP], a postsynaptic 5-HT1A receptor antagonist. However, the effect of 8-OH-DPAT (1 mg/kg, IP) was not blocked by NAN-190 (1 mg/kg, IP). The effect of buspirone (3 mg/kg, IP) was blocked by apomorphine (0.3 mg/kg, IP), a dopamine receptor agonist. Based on the results of this study, it is suggested that the effects of buspirone and of 8-OH-DPAT on immobility in the forced swim test may occur through different mechanisms.  相似文献   

2.
The effects of the 5-HT1A receptor agonist 8-hydroxy-2-(di-n-propylamino)-tetralin (8-OH-DPAT) on the epileptiform activity has been investigated in adult WAG/RIJ rats. Either intraperitoneal (0.1-0.5 mg/kg) or intracerebroventricular (2-20 microg/rat) administration of 8-OH-DPAT caused marked, dose-dependent increases in the number and mean cumulative duration of spike-wave discharges. These effects were attenuated by NAN-190, a 5-HT1A receptor antagonist. These data indicate that serotonergic system regulates the epileptiform activity in this genetic model of human absence epilepsy.  相似文献   

3.
Rats were trained to discriminate 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT, 0.1 mg/kg i.p.) or 5-methoxy-N,N-dimethyltryptamine (5-OMe-DMT, 1.25 mg/kg i.p.), a selective and nonselective 5-hydroxytryptamine1A (5-HT, serotonin) receptor agonist, respectively, from saline in a two-lever procedure. The selective 5-HT1A receptor agonist ipsapirone substituted completely for 8-OH-DPAT (ED50, 1.52 mg/kg) and 5-OMe-DMT substituted partially for 8-OH-DPAT, whereas 8-OH-DPAT (ED50, 0.07 mg/kg) and ipsapirone (ED50, 4.15 mg/kg) substituted completely for 5-OMe-DMT. These results suggest that the discriminative stimulus properties of both 8-OH-DPAT and 5-OMe-DMT are 5-HT1A receptor mediated, although 5-OMe-DMT may involve an additional interaction with other 5-HT receptor subtypes. 5-OMe-DMT substituted for 8-OH-DPAT after application in the lateral ventricle (ED50, 3.0 micrograms/rat) and the dorsal raphe nucleus (DRN, 1.1 micrograms/rat). After application in the DRN (ED50 range, 1.4-5.0 micrograms/rat) and the median raphe nucleus (2.3 micrograms/rat), and after bilateral application into the CA-4 region of the dorsal hippocampus (4.1 micrograms/rat), 8-OH-DPAT also produced responding on the 8-OH-DPAT lever. Ipsapirone also substituted for 8-OH-DPAT after application into the DRN and the hippocampus (ED50S, 38 and 62 micrograms/rat, respectively). The 5-HT1A mixed agonist-antagonist (1-(2-methoxyphenyl) 4-[4-(2-pthalimido)butyl]piperazine, i.p. NAN-190) attenuated the discriminative stimulus effects of 8-OH-DPAT injected i.p. (0.1 mg/kg), into the DRN (10 micrograms) or into the hippocampus (2 x 10 micrograms).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The anxiolytics buspirone (BUS), ipsapirone (IPSAP) and gepirone (GEP) were investigated as 5-HT1A receptor-mediated inhibitors of tyrosine hydroxylation (TH) in a synaptosome-rich preparation of rat striatum. BUS, IPSAP and GEP were moderately potent inhibitors of TH with EC50 values of 48.4 microM, 50 microM and 836 microM, respectively. By comparison, 8-OH-DPAT, a 5-HT1A receptor selective agonist, has been previously shown to be more potent with an EC50 value of 7.0 microM. Each of these agents demonstrated full agonist activity at the striatal 5-HT1A receptors regulating TH. The inhibitory effects of each agent were attenuated by prior exposure to the 5-HT1A antagonist NAN-190, (10 microM) (P < 0.05), but not by the dopamine D2 antagonist (-)-sulpiride (10 microM). The potencies of 8-OH-DPAT, BUS, IPSAP and GEP were correlated with their reported affinities for the 5-HT1A receptor (P < 0.01) but not the dopamine D2 receptor. These results support the hypothesis that BUS, IPSAP and GEP inhibit TH through activation of a striatal 5-HT1A heteroreceptor on dopamine nerve terminals.  相似文献   

5.
To examine the effects of 4-[3-(benzotriazol-1-yl)-propyl]-1-(2-methoxyphenyl)piperazine (MP-3022), a high affinity 5-HT1A ligand, on the 5-HT1A-induced stimulus effect and to compare its effects with those produced by some 5-HT1A receptor ligands, rats were trained to discriminate between 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT), 0.1 mg/kg ip, and saline in a standard, two-lever operant procedure. Substitution studies showed that the 8-OH-DPAT cue was mimicked in a dose-dependent manner by buspirone and ipsapirone, the 5-HT1A receptor partial agonists, but not by 1-(3-chlorophenyl)piperazine (m-CPP), a nonselective 5-HT agonist. Furthermore, the 8-OH-DPAT cue was almost completely blocked by 1-(2-methoxyphenyl)-4-[4-(2-phthalimido)]butylpiperazine (NAN-190), a 5-HT1A receptor and alpha 1-adrenoceptor antagonist, but not by prazosin (a selective alpha 1-adrenoceptor blocker). Our results also demonstrate that the discriminative effect of 8-OH-DPAT may be dose-dependently antagonized by MP-3022, which itself does not mimic the cue. It is concluded that MP-3022 behaves like a full 5-HT1A receptor antagonist in the 8-OH-DPAT-evoked discrimination procedure.  相似文献   

6.
The effects of the putative 5-HT1A receptor antagonist 4-iodo-N-[2-[4-(methoxyphenyl)-1-piperazinyl]ethyl]-N-2-pyridinyl-benzam ide (p-MPPI) were examined on the activity of serotonergic dorsal raphe nucleus neurons in freely moving cats. Systemic administration of p-MPPI produced a dose-dependent increase in firing rate. This stimulatory effect of p-MPPI was evident during wakefulness (when serotonergic neurons display a relatively high level of activity), but not during sleep (when serotonergic neurons display little or no spontaneous activity). p-MPPI also blocked the ability of the 5-HT1A receptor agonist 8-hydroxy-(2-di-n-propylamino)tetralin (8-OH-DPAT) to inhibit serotonergic neuronal activity. This antagonism was evident both as a reversal of the neuronal inhibition produced by prior injection of 8-OH-DPAT and as a shift in the potency of 8-OH-DPAT following p-MPPI pretreatment. Overall, these results in behaving animals indicate that p-MPPI acts as an effective 5-HT1A autoreceptor antagonist. The increase in firing rate produced by p-MPPI supports the hypothesis that autoreceptor-mediated feedback inhibition operates under physiological conditions.  相似文献   

7.
Single-unit recording studies were undertaken in chloral hydrate-anesthetized rats to compare the effects on dorsal raphe cell firing of several putative 5-hydroxytryptamine (HT)1A receptor antagonists, including WAY 100635 (N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridinyl) cyclohexanecarboxamide), p-MPPI (4-(2-methoxyphenyl)1-[2'-[N-(2"-pyridinyl)-p-iodobenzamido]ethyl] pip erazine), and two newly described 5-HT1A receptor antagonists, NDL-249 [(R)-3-(N-propylamino)-8-fluoro-3, 4-dihydro-2H-1-benzopyran-5-carboxamide] and NAD-299 [(R)-3-N, N-dicyclobutylamino-8-fluoro-3, 4-dihydro-2H-1-benzopyran-5-carboxamide]. Consistent with a 5-HT1A receptor antagonist profile, pretreatment with an approximately equimolar (0.02-0.03 micromol/kg) i.v. dose of each compound caused a significant rightward shift in the dose-response curve for 8-OH-DPAT [8-hydroxy-2-(di-n-propylamino)tetralin]. Antagonist potency was clearly highest for NAD-299 and WAY 100635, which caused shifts roughly 3 times greater than those for either p-MPPI or NDL-249 (ED50 for 8-OH-DPAT, 1.3 +/- 0.3 microg/kg; after NAD-299, 18.2 +/- 1.0 microg/kg; after WAY 100635, 16.9 +/- 2.9 microg/kg; after NDL-249, 6.0 +/- 1.2 microg/kg; after p-MPPI, 4.7 +/- 1.1 microg/kg). In separate studies, each of the antagonists was administered alone in increasing cumulative doses to evaluate whether they possessed intrinsic agonist activity in this system. At doses below 0.01 micromol/kg, none of the drugs altered firing by more than +/-20% basal rates. At higher doses (>0.1 micromol/kg), WAY 100635, NDL-249, and NAD-299 caused a dose-dependent suppression of dorsal raphe cell firing (ED50 = 0.6 +/- 0.2, 0.7 +/- 0.3, and 0. 9 +/- 0.4 micromol/kg, respectively). However, the ED50 values for inhibition by these drugs were roughly 30 times higher than the doses that antagonized effects of 8-OH-DPAT. Moreover, the inhibition by all three antagonists (but not 8-OH-DPAT) was readily reversed by d-amphetamine (3.2 mg/kg i.v.), a releaser of norepinephrine, suggesting that these effects were likely due to alpha adrenergic receptor blockade rather than to 5-HT1A receptor agonism. Thus, it was concluded that WAY 100635, NAD-299, NDL-249, and p-MPPI all fulfill criteria as 5-HT1A receptor antagonists lacking intrinsic efficacy in the dorsal raphe system. The newly described compound NAD-299 exhibits antagonist potency comparable to that of WAY 100635 in this electrophysiological assay.  相似文献   

8.
We have previously reported that neonatal (P3) serotonin (5-HT) depletion results in a significant decrease in the number of dendritic spines per 50 microns of dendritic length on dentate granule cells. This effect is specific and permanent. Neither total dendritic length nor the number of dendritic segments is affected by 5-HT depletion. The area dentata contains a dense 5-HT1a receptor population that is present in the at birth. Therefore, 5-HT1a receptors represented a likely candidate for the mediation of the effects of 5-HT on developing granule cells. The present study used the drugs buspirone and NAN-190, which have been shown to be an agonist and antagonist respectively at postsynaptic 5-HT1a receptors in vivo, to test the idea that neurotrophic actions of 5-HT result from 5-HT1a receptor stimulation. Following 5-HT depletion with PCA, pups received daily injections of buspirone (1.0 mg/kg) from P5 to P14. Granule cell morphology was then studied using intracellular filling with Neurobiotin on P14, P21 and P60. Buspirone treatment prevented the loss of dendritic spines previously shown to follow 5-HT depletion with PCA. No other morphological parameters were significantly changed by buspirone treatment. Naive pups received daily injections of NAN-190 from P3 to P14. One group received 1.0 mg/kg while a second group received 3.5 mg/kg. Both doses of NAN-190 resulted in dendritic spine loss comparable to that obtained with neonatal PCA treatment. This loss was permanent suggesting that the first two postnatal weeks may represent a critical period for the action of 5-HT on developing granule cells. Significant, dose-dependent changes in total dendritic length and number of dendritic segments reminiscent of the effects of norepinephrine depletion were also observed in NAN-190-treated rats. We suspect that this change is the result of the action NAN-190 at alpha receptors and is therefore distinct from the specific effect of 5-HT on the number of dendritic spines. The NAN-190 experiment also shows that the loss of dendritic spines is a function of decreased stimulation of 5-HT1a receptors and not the loss of 5-HT terminal membrane.  相似文献   

9.
A conflict procedure in pigeons was used to characterize the antipunishment effects of the putative mixed 5-hydroxytryptamine (5-HT)1A agonist/5-HT2A/2C antagonists WY 50,324, CGS 18102A, LEK 8804 and FG 5974 and to further investigate interactions between the antipunishment effects of the 5-HT1A agonists buspirone and 8-OH-DPAT [8-hydroxy-2-(di-n-propylamino)tetralin] administered in combination with the mixed 5-HT2A/2C antagonist ritanserin and the alpha 1 antagonist prazosin. The 5-HT1A agonists, buspirone and 8-OH-DPAT, which lack affinity for 5-HT2A/2C receptors, produced dose-related increases in punished responding. Of the compounds with a mixed binding profile, only WY 50,324 showed effects that were comparable to those observed after 8-OH-DPAT, whereas FG 5974 and CGS 18102A exhibited limited effects on punished responding, and LEK 8804 was ineffective. Administration of a relatively low, behaviorally active dose of ritanserin (0.16 mg/kg) significantly enhanced the potency of 8-OH-DPAT and buspirone to increase punished responding from 8 to 50-fold without altering their effects on unpunished responding. Importantly, ritanserin failed to increase the number of doses of 8-OH-DPAT that significantly increased punished responding. In contrast, prazosin (2.5 mg/kg) significantly enhanced the potency and increased the number of doses of buspirone exerting significant effects on punished responding, but did not alter the effects of 8-OH-DPAT. Taken together, the results neither explain the suggested greater efficacy in producing anxiolytic effects of compounds with putative mixed 5-HT1A agonist and 5-HT2A/2C antagonist properties, nor confirm a proposed interaction between alpha1 adrenoreceptors and 5-HT1A agonists in preclinical tests of anxiolytic activity.  相似文献   

10.
We have previously reported that the serotonin 5-HT1A agonist 8-OH-DPAT and the 5-HT2c agonist TFMPP impair performance on a water maze. In the present report we extended those studies by examining a second 5-HT1A agonist, buspirone, to see whether its effects paralleled those of 8-OH-DPAT, and by testing the effects of the 5-HT2 agonist DOI. Unlike the open pool Morris water maze, the maze used in these experiments has alleys and doorways. The maze can be easily reconfigured to present rats with both previously learned or new maze challenges. Performance is assessed by time to reach the maze exit platform and the number of wrong doorways entered (errors). At doses that did not affect performance in a previously learned maze, the 5-HT1A agonists 8-OH-DPAT (0.1 mg/kg) and buspirone (1 mg/kg) slowed acquisition of a new maze configuration as measured by both swim time to the exit platform and errors committed. A higher dose of buspirone (10 mg/kg) completely blocked acquisition of a novel maze. In contrast. DOI slowed performance as assessed by swim time on both a well-learned maze as well as acquisition of a new maze, but did not affect error rate on either task, suggesting that this 5-HT2 agonist impaired performance by depressing motor activity. These experiments demonstrate that serotonin agonists, especially the 5-HT1A subtype, can impair learning.  相似文献   

11.
In this study, the effects of serotonin (5-HT) on in vitro lymphoproliferation in rainbow trout (Oncorhynchus mykiss) are investigated. Serotonin exerted immunosuppressive effects on lipopolysaccharide (LPS) and phytohemagglutinin (PHA)-stimulated proliferation of fish peripheral blood lymphocytes (PBL). 8-OH-DPAT (an agonist of 5-HT1A receptors) mimicked the inhibitory effects of serotonin on lymphocyte proliferation, whereas addition of spiperone (an antagonist of 5-HT1A and 5-HT1B receptors) reversed these inhibitory effects, indicating that 5-HT1A receptors may be implicated in serotonin-induced immunosuppression. Furthermore, in this study the serotonergic receptors present on fish peripheral lymphocytes were characterized. A Scatchard plot of serotonin binding to fish lymphocytes followed the 'bell' shape curve with a Bmax of 0.63 microM and a Kd of 1.54 x 10(-8) M/10(6) cells. These results demonstrate the presence of positive-type co-operation among receptor populations. In a displacement study, serotonin inhibited the binding of 3H-5HT to the receptor sites both in resting and LPS/PHA-stimulated trout lymphocytes. Interestingly, the agonists (8-OH-DPAT and buspirone) and antagonist (NAN-190) of the 5-HT1A receptor subtype failed to displace 3H-5HT binding to receptor sites in resting cells, whereas these agents inhibited 3H-5HT binding in LPS- and PHA-stimulated lymphocytes significantly, suggesting that after mitogenic stimulation, 5-HT1A receptors are expressed on lymphocytes. CGS-12066B (an agonist of 5-HT1B receptors) failed to influence significantly 3H-5HT binding to receptor sites both in resting and mitogen-stimulated lymphocytes, indicating that the 5-HT receptor subpopulation is not expressed either on resting or on LPS- or PHA-stimulated lymphocytes. Taken together, these results suggest that trout peripheral blood lymphocytes express functional serotonergic receptors, and 5-HT1A receptors, which are not expressed by resting lymphocytes, are expressed after mitogenic stimulation and implicated in the inhibition of mitogenic (LPS and PHA) responses.  相似文献   

12.
The effects of the co-administration of the serotonin (5-HT) 1A receptor antagonists NAN-190 or (+)-WAY100135 with a selective 5-HT reuptake inhibitor (SSRI) citalopram on conditioned fear stress (CFS)-induced freezing behavior, which is the animal model of anxiety, were examined. The inhibitory effects of co-administration of NAN-190 (0.1-10 mg/kg) with citalopram on CFS-induced freezing were potent; in particular, at 0.1 and 0.25 mg/kg, NAN-190 significantly enhanced the effect of citalopram alone. At 0.1 mg/kg, (+)-WAY100135 also markedly enhanced the inhibitory effect of citalopram on freezing behavior. These findings suggest that 5-HT1A receptor antagonist, particularly at low doses, enhances the antifreezing effect of citalopram by blocking the autoreceptor-mediated negative feedback mechanisms of the 5-HT neuron. These experimental results concur with clinical findings that 5-HT1A receptor antagonist pindolol potentiates the effect of 5-HT reuptake inhibitors.  相似文献   

13.
Using an in vivo model for evaluation of gastric sensitivity in awake rats, we aimed to determine whether 5-hydroxytryptamine 1A (5-HT1A) agonists modify pain threshold and gastric compliance specifically through 5-HT1A receptors. Isobaric gastric distensions were performed with a barostat using steps of 5 mm Hg in male rats equipped with a gastric balloon and electrodes implanted in the neck muscles. Gastric distension at 15 or 20 mm Hg induced a typical posture associated with contractions of the neck muscles. Rats received drugs 30 min before gastric distension. The 5-HT1A receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT), administered intraperitoneally (0.5 mg/kg) increased gastric pain threshold and gastric tone. These effects were reproduced when administered centrally (0.05 mg/kg) and blocked by intracerebroventricular administration of the 5-HT1A antagonist WAY 100635. Flesinoxan (4 mg/kg, intraperitoneally), another 5-HT1A agonist reproduced the effects of 8-OH-DPAT on pain threshold and gastric tone and the alpha2-receptor antagonist yohimbine did not modify the action of 8-OH-DPAT. Our results indicate that activation of 5-HT1A receptors at the level of the central nervous system increases gastric tone and decreases gastric sensitivity to distension.  相似文献   

14.
The sleep and waking and EEG power spectrum effects of the putative 5-HT1A antagonist NAN-190 (0.5 mg/kg, i.p.) were studied alone and in co-administration with the selective serotonin re-uptake inhibitor citalopram (5.0 mg/kg, i.p.) in the rat. Citalopram, as in a prior dose-response study, reduced REM sleep. In addition, a slight increase in NREM sleep was observed. Citalopram reduced NREM fronto-parietal (FP) EEG power density in the 5-20 Hz range. When administered alone, NAN-190 suppressed REM sleep in the first 2 h, and reduced SWS-2 in the first 4 after administration. NAN-190 also suppressed selectively NREM sleep slow-wave activity in both fronto-frontal (FF) and FP EEG power spectrum. When administered in combination with citalopram, an attenuation of the power density reduction in the 7-15 Hz range in the FF EEG of citalopram alone, was observed. However, the EEG power spectral density and REM sleep suppressive effects of NAN-190 were both augmented. The results are compatible with the notion that serotonin is involved in the modulation of the slow wave activity in the EEG during NREM sleep. The results are cordant with other data suggesting that postsynaptic 5-HT1A stimulation might increase slow wave activity in the NREM EEG, and that serotonergic stimulation of other receptor subtypes (possibly 5-HT2) may decrease slow wave activity in the NREM EEG.  相似文献   

15.
One week after a single administration of 3,4-methylenedioxymethamphetamine (MDMA HCI, 30 mg/kg i.p.), 5-HT1A receptor density was significantly increased by approximately 25-30% in the frontal cortex and hypothalamus of rats. The increased density correlated with the potentiation of the hypothermic response to the 5-HT1A receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT, 1 mg/kg s.c.). Hypothalamic 5-HT7 receptors, which also bind 8-OH-DPAT, were not changed, however, by MDMA. Fluoxetine (5 mg/kg s.c.), ketanserin (5 mg/kg s.c.) or haloperidol (2 mg/kg i.p.), given 15 min prior to MDMA, prevented the depletion of 5-hydroxytryptamine (5-HT) induced by MDMA and also blocked the effects of this neurotoxin on 5-HT1A receptor density and on 8-OH-DPAT-induced hypothermia. The protection afforded by drugs against 5-HT loss did not correlate, however, with the antagonism of the acute hyperthermic effect of MDMA. The present results indicate that drugs able to prevent or to attenuate MDMA-induced 5-HT loss also prevent the changes in 5-HT1A receptor density as well as the enhanced hypothermic response to the 5-HT1A receptor agonist 8-OH-DPAT in MDMA-treated rats.  相似文献   

16.
The ionic channels and signal transduction pathways underlying the 5-hydroxytryptamine (5-HT)-induced hyperpolarization in neurons of the rat dorsolateral septal nucleus (DLSN) were examined by using intracellular and voltage-clamp recording techniques. Application of 5-HT (1-50 microM) caused a hyperpolarizing response associated with a decreased membrane resistance in DLSN neurons. The hyperpolarization induced by 5-HT was blocked by Ba2+ (1 mM) but not by tetraethylammonium (TEA, 3 mM), glibenclamide (100 microM) and extracellular Cs+ (2 mM). 8-Hydroxy-di-n-propylamino tetralin (8-OH-DPAT; 3 microM), a selective agonist for the 5-HT1A receptor, mimicked 5-HT in producing the hyperpolarization. The 5-HT hyperpolarization was blocked by NAN-190 (5 microM), a 5-HT1A receptor antagonist. CP93129 (100 microM), a 5-HT1B receptor agonist, and L-694-247 (100 microM), a 5-HT1B/1D receptor agonist, also produced hyperpolarizing responses. The order of agonist potency was 8-OH-DPAT > CP93129 > or = L-694-247. (+/-)-2,5-Dimethoxy-4-iodoamphetamine hydrochloride (DOI, 100 microM), a 5-HT2 receptor agonist, and RS67333 (100 microM), a 5-HT4 receptor agonist, caused no hyperpolarizing response. The voltage-clamp study showed that 5-HT caused an outward current (I5-HT) in a concentration-dependent manner. I5-HT was associated with an increased membrane conductance. I5-HT reversed the polarity at the equilibrium potential for K+ calculated by the Nernst equation. I5-HT showed inward rectification at membrane potentials more negative than-70 mV. Ba2+ (100 microM) blocked the inward rectifier K+ current induced by 5-HT. I5-HT was irreversibly depressed by intracellular application of guanosine 5'-O-(3-thiotriphosphate)(GTP-gamma S) but not by guanosine 5'-O-(2-thiodiphosphate) (GDP beta S). These results suggest that in rat DLSN neurons activation of 5-HT1A receptors causes a hyperpolarizing response by activating mainly the inward rectifier K+ channels through a GTP-binding protein.  相似文献   

17.
Stimulus control was established in rats using either 8-hydroxy-2-[di-n-propylamino]tetralin (DPAT) (0.2 mg/kg) or yohimbine (3 mg/kg). Tests were then conducted with purported antagonists at 5-hydroxytryptamine1A (5-HT1A) receptors. Drugs studied were NAN-190, [+/-]-pindolol, and [-]-alprenolol. In addition, each drug was characterized in terms of its affinity for 5-HT1A and alpha 2-adrenoceptors by means of radioligand binding techniques. None of the antagonists tested provided complete blockade of the stimulus effects of either DPAT or yohimbine. However, [+/-]-pindolol produced a statistically significant intermediate degree of antagonism of both DPAT and yohimbine. The affinities of DPAT, yohimbine, and NAN-190 for the 5-HT1A and alpha 2-adrenergic receptors, respectively, were sufficiently high to lead to some ambiguity of interpretation of the behavioral data. However, the results with [+/-]-pindolol, which has high affinity for the 5-HT1A receptor (34 nM) and negligible affinity for the alpha 2-adrenoceptor (24,600 nM), indicate that a significant component of yohimbine-induced stimulus control is mediated by the 5-HT1A receptor.  相似文献   

18.
The new antidepressant mirtazapine was tested in two experimental procedures which can reveal direct or indirect 5-HT1A receptor agonistic effects. These procedures were observation for induction of lower lip retraction in rats and comparison of stimulus properties in cross-familiarization experiments with conditioned taste aversion in mice. Mirtazapine induced lower lip retraction in rats, as did the 5-HT1A receptor agonist (+/-)-8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT). However, the response to mirtazapine at doses up to 22 mg/kg remained below the maximum score obtained with 8-OH-DPAT (0.46 mg/kg). Blockade of the 5-HT1A receptors with pindolol (10 mg/kg) caused a strong reduction of the lower lip retraction induced both with mirtazapine and 8-OH-DPAT. In the cross-familiarization conditioned taste aversion experiments it was found that the conditioned taste aversion induced by mirtazapine (0.32 mg/kg) could be prevented if the mice were pre-exposed to injections with mirtazapine (0.22 and 0.46 mg/kg), 8-OH-DPAT (0.22 and 0.46 mg/kg) and after pre-exposure to the 5-HT reuptake inhibitor fluoxetine (22 mg/kg). No familiarization for the mirtazapine stimulus was obtained by pre-exposure to (+/-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane HCl (DOI) (0.46-4.6 mg/kg) and MK212 (2.2-22 mg/kg), being agonists for the 5-HT2A and 5-HT2C receptors, respectively. With the reversed sequence, the conditioned taste aversion induced by 8-OH-DPAT (0.22 mg/kg), DOI (1.0 mg/kg) and fluoxetine could be prevented only partially by pre-exposure to mirtazapine in a dose of 1 mg/kg. The conditioned taste aversion induced by MK 212 (4.6 mg/kg) was not affected by pre-exposure to mirtazapine (0.1-1.0 mg/kg). On the basis of these results, it can be concluded that mirtazapine has indirect 5-HT1A receptor agonistic properties which may play an important role in the therapeutic effect of this compound.  相似文献   

19.
Pre-exposure to 5-hydroxytryptamine (5-HT) receptor agonists in conditioned taste aversion experiments was used to characterize the stimulus properties of fluoxetine. The taste aversion induced by fluoxetine (10 mg/kg) was completely prevented when mice were pre-exposed to fluoxetine or when they were pre-exposed to the preferential 5-HT1C receptor agonist MK 212. Pre-exposure to MK 212 also prevented the conditioned taste aversion induced by another serotonin uptake inhibitor, paroxetine. A partial attenuation of fluoxetine-induced conditioned taste aversion was seen after pre-exposure to a high dose of the 5-HT1A receptor agonist (+/-)-8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT; 1 mg/kg), but not to lower doses. No familiarization for the fluoxetine stimulus was obtained by pre-exposure to treatments with the mixed 5-HT1C/2 receptor agonist (+/-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane HCl (DOI). With the reversed sequence, pre-exposure to fluoxetine prevented the conditioned taste aversion induced by MK 212 or 8-OH-DPAT and reduced that induced by DOI. It is concluded that the acute stimulus properties of fluoxetine mostly resemble those of a 5-HT1C receptor agonist. This supports the suggestion that the 5-HT1C receptor can play an important role in the therapeutic effect of 5-HT reuptake inhibitors.  相似文献   

20.
The effects of corticosterone after binding to 5-HT1A and 5-HT2 receptors were studied in rats. Binding of [3H]8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT) to 5-HT1A receptors in the hippocampus decreased 24 h after both acute and chronic (14 day) administration of CORT (50 mg/kg, s.c.). Chronic, but not acute, CORT treatment increased [3H]ketanserin binding to 5-HT2 receptors in the frontal cortex. Receptor-mediated behavioral responses were also examined following acute and chronic CORT treatment. Flat body posture and hypothermia induced by 8-OH-DPAT, a 5-HT1A receptor agonist, were attenuated following chronic, but not acute, CORT administration. (+/-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI), a 5-HT2 receptor agonist, induced wet-dog shakes, but not hyperthermia and this response was increased 24 h after the chronic administration of CORT. These findings indicate that both 5-HT1A and 5-HT2 receptor functions were changed following chronic exposure to high levels of CORT. Such changes in these receptor systems may play an important role in the etiology of affective disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号