首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 15 毫秒
1.
Large-Eddy Simulation(LES)is applied to examine the turbulent mixing and evolution in a stably stratified flow with a thermally sharp interface.Turbulent velocity intensities and turbulent kinetic energy are analyzed by considering the mean shear and stratification effects.The evolution of turbulent mixing layer and turbulent structures are mainly investigated.The results show that the streamwise intensities are much larger than the vertical intensities,and vertical fluctuations decay more rapidly at the presence of stratification.The qualitatively computational results suggest that the mixing layer,defined by the mean temperature,inclines to the side with small inlet velocity.The evolution of the half-width of the mixing layer shows two different slopes.The turbulent structure with high vorticity is restricted in the mixing layer especially in strong stratified cases.  相似文献   

2.
The braided river is a typical river pattern in nature, but there is a paucity of comprehensive data set describing the three-dimensional flow field in the braided river. A physical model experiment was used to study the flow characteristics in the typical braided river with a mid-bar between two anabranches. In the experiment, two kinds of mid-bar with the ratios of its length to maximal width of 3 and 5 were considered. Moreover, the mid-bar could be moved to adjust the width of two anabranches. The detailed measurements of velocity were conducted using an acoustic Doppler velocimeter over a grid defined throughout the whole braided river region, including the bifurcation, two anabranches and the confluence. In two kinds of mid-bar braided models, a separation zone was observed in the anabranch of the model in which the ratio of length to maximal width of mid-bar is 3, however the separation zone was not found in another model in which the ratio is 5. In addition, the opposite secondary cells were observed at the bend apex of anabranch in two models, and different longitudinal velocity distributions in the entrance region of anabranch account for this opposite flow structure. Finally, turbulent kinetic energy were shown and compared in different situations. The high turbulence occurs at the place with strong shear, especially at the boundary of the separation zone and the high velocity passing flow.  相似文献   

3.
Twin jets flow, generated by two identical parallel axisymmetric nozzles, has been experimentally investigated. The dimensionless spacing (B) between two nozzles were set at 1.89, 1.75 and 1.5. Measurements have been carried out at several free-stream velocities ranging from 10 m/s to 25 m/s or Reynolds numbers (based on the nozzle diameter of 44 mm) ranging from 3.33×104 to 8.33×104. The results show that the twin jets attract each other. With the increasing Reynolds number, the turbulence energy grows, which indicates that the twin jets attract acutely. The jet flow field and the merging process of two jets vary with B. The width of the twin jets flow spreads linearly downstream and grows with B. The merging between two jets occurs at the location closer to the nozzle exit for the cases with smaller spacing between nozzles and higher Reynolds number.  相似文献   

4.
Large Eddy Simulation (LES) of fully developed turbulent channel flow with heat transfer was performed to investigate the effects of the Reynolds number on the turbulence behavior. In the present study, the bottom wall of the channel was cooled and the top wall was heated. The Reynolds numbers, based on the central mean-velocity and the half-width of the channel, were chosen as 4000, 6000, 104 and 2×104, and the Prandtl number as 1.0. To validate our calculations, the present results were compared with available data obtained by Direct Numerical Simulation (DNS), which proves to be in good agreement with each other. To reveal the effects of the Reynolds number, some typical quantities, including the velocity fluctuations, temperature fluctuation, heat fluxes and turbulent Prandtl number, were studied.  相似文献   

5.
The thermal imaging technique relies on the usage of infrared signal to detect the temperature field.Using temperature as a flow tracer,thermography is used to investigate the scalar transport in the shallow-water wake generated by an emergent circular cylinder.Thermal imaging is demonstrated to be a good quantitative flow visualization technique for studying turbulent mixing phenomena in shallow waters.A key advantage of the thermal imaging method over other scalar measurement techniques,such as the Laser Induced Fluorescence(LIF)and Planar Concentration Analysis(PCA)methods,is that it involves a very simple experimental setup.The dispersion characteristics captured with this technique are found to be similar to past studies with traditional measurement techniques.  相似文献   

6.
Particle Image Velocimetry (PIV) technique was employed to study experimentally gas-liquid two-phase flow in an aeration tank. In terms of the PIV principles, an algorithm of PIV based on the Fast Fourier Transformation (FFT) was worked out. The PIV program was developed and verified, and then was used to measure three kinds of states in the testing device. The program was also used to calculate and analyze the related parameters. The experimental data indicate that the bubbles in testing device have the longest resident time and stronger turbulent intensity for the gas-liquid two-phase flow in a special case (Case 3), resulting in great increase of the oxygen transferring speed and efficiency, whereby providing the basis for the selection design of aeration tank.  相似文献   

7.
To apply the measurements of model experiment in water tunnel to the actual sailing condition,it is necessary to know accurately the strut effect and its rule.In the present work,the corresponding interferences of one-side strut and two-side strut on the natural cavitating flows around a submerged vehicle in water tunnel were investigated numerically,using the homogeneous equilibrium two-phase model coupled with a natural cavitation model.The numerical simulation results show that the strut types have distinct effects on the hydrodynamic properties.For the same given upstream velocity and downstream pressure,the existence of the strut leads to an increment of natural cavitation number,reduces the low-pressure region and depresses the pressure on the vehicle surface near the sides of strut.In the case of given cavitaiton number,the influences of the two-side strut on the drag and lift coefficients are both enhanced along with the increment of attack angle,however the influence of the one-side strut gradually gets stronger on the drag coefficient but weaker on the lift coefficient contrarily.In addition,based on the present numerical results,a correction method by introducing the sigmoidal logistic function is proposed to eliminate the interference from the foil-shaped strut.  相似文献   

8.
This dissertation deals with the internal waves generated by a submerged moving body in stratified fluids by combining theoretical and experimental methods. Our purpose is to provide some scientific evidences for non-acoustic detection of underwater moving bodies based on the principles of dynamics of the internal waves. An approach to velocity potentials obtained by superposing Green‘s functions of sources and sinks was proposed for Kelvin waves at the free surface or interface in a two-layer fluid. The effects of interacting surface and internal wave modes induced by a dipole on the surface divergence field were investigated. A new theoretical model formulating the interaction of a two dimensional submerged moving body with the conjugate flow in a three-layer fluid was established. An exact solution satisfying the two dimensional Benjamin Ono equation was obtained and the vertically propagating properties of the weakly nonlinear long waves were studied hy means of the ray theory and WKB method. The above theoretical results are qualitatively consistent with those obtained in the experiments conducted by the author.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号