首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In this study, the levels of mRNAs coding for aggrecan, decorin and biglycan in rabbit articular chondrocytes were investigated, using both monolayer and 3D-alginate cultures treated with TGF-beta 1 and IL-1 beta. The cells were shown to express higher amounts of proteoglycan messages, specially the aggrecan, in gels than in monolayers. TGF-beta 1 increased aggrecan mRNA in both systems, whereas biglycan message was elevated only in alginate. It markedly decreased decorin expression in monolayer, either in primary or passaged cultures. In contrast, IL-1 beta had a weak inhibitory effect on both decorin and biglycan expression. Subculturing induced a dramatic decrease of aggrecan mRNA, while that of decorin augmented. Biglycan expression transiently increased after two passages, whereas it declined in further subcultures. Passaged chondrocytes transferred to alginate re-expressed high levels of aggrecan, decorin and biglycan. The data point to the influence of morphology, proliferative state and environment of the articular chondrocytes on their biosynthetic responses to cytokines. Although these immature cells do not fully reflect the adult chondrocytes present in the cartilage, this study may help in understanding the behaviour of these cells in osteoarticular diseases, where the surrounding extracellular matrix is profoundly altered.  相似文献   

2.
3.
Mechanical loading and TGF-beta regulate proteoglycan synthesis in tendon   总被引:1,自引:0,他引:1  
Fibrocartilage is found in tendon at sites where the tissue is subjected to transverse compressive loading in vivo. A significant characteristic of the tissue transition from tendon to fibrocartilage in bovine deep flexor tendon is increased gene expression, synthesis, and accumulation of both a large proteoglycan, aggrecan, and a small proteoglyoan, biglycan. In order to investigate the cellular events involved in this response, segments of fetal bovine deep flexor tendon were subjected in vitro to cyclic compressive load for 72 h. Following loading, the level of aggrecan mRNA in cells from loaded tissue was increased 200-450% compared to matched nonloaded tissue segments, as determined by slot-blot analysis. The level of biglycan mRNA increased 100%, and the level of versican mRNA increased 130% in the loaded tissue. The level of decorin mRNA remained virtually unchanged, while expression of alpha 1(I) collagen increased only 40%. When tissue segments were cultured in the presence of transforming growth factor (TGF)-beta 1 (1 ng/ml), the synthesis and expression of mRNA for both aggrecan and biglycan increased, whereas decorin expression was not affected. Similarity in both the direction and the pattern of the cellular response to mechanical load and TGF-beta suggested a causal relationship. Both loading of tendon segments and TGF-beta treatment increased expression of mRNA for TGF-beta by approximately 40% compared to control tissue. In addition, the amount of newly synthesized TGF-beta immunoprecipitated from extracts of loaded tissue was several-fold greater than that from nonloaded tissue. The experiments of this study support a hypothesis suggesting that one aspect of the response of cells in fetal tendon to compressive load is increased TGF-beta synthesis which, in turn, stimulates synthesis of extracellular matrix proteoglycans and leads toward fibrocartilage formation.  相似文献   

4.
5.
In this study we investigated the hypothesis that cartilage from defined regions of ovine stifle joints, which were subjected to differing mechanical stresses, contained phenotypically distinct chondrocyte populations. Chondrocyte phenotypes were identified by the relative biosynthesis of the proteoglycans (PGs) aggrecan, biglycan and decorin. Articular cartilage (AC) from adult and neonatal ovine stifle joints were examined. Cells were cultured as both full-depth AC explants and in alginate beads after their isolation from the AC matrix. When chondrocytes from the various topographical regions of adult ovine knee joints were cultured as explants they demonstrated a consistent difference with regard to the metabolism of aggrecan and decorin. Significantly, this topographically-dependent phenotypic expression of PGs was preserved when the chondrocytes were cultured in alginate beads. In adult joints, chondrocytes from the central region of the tibial plateau not covered by the meniscus, which is subjected to high mechanical loads in-vivo, synthesized less aggrecan but more decorin than cells from regions covered by the meniscus. When chondrocytes from identical AC regions of neonatal ovine joints were cultured as explants, no topographical difference in aggrecan nor decorin metabolism could be detected. The results of this study, in association with the existing literature, lead us to propose that post-natal mechanical loading of AC could select for chondrocyte clones or induce a lasting modulation of chondrocyte phenotypic expression in different joint regions. Such cellular changes could result in the synthesis of PG populations that confer properties to AC most suited to resist the variable mechanical stresses in the different joint regions. This study serves to emphasize the importance of using cartilage from identical joint areas when examining PG metabolism by chondrocytes. Further investigation into the relationship between mechanical loading, regional chondrocyte phenotype selection and the response of these cells to anabolic and catabolic factors may provide important insights into the focal nature of AC degeneration in osteoarthritis.  相似文献   

6.
7.
The Fas antigen is a transmembrane receptor belonging to the tumor necrosis factor-alpha (TNF) receptor family that, when activated by Fas ligand or agonistic antibodies, induces death by apoptosis. Although the presence of Fas antigen in ovarian tissues has been demonstrated, little is known about whether Fas antigen is functional in the ovary. This report shows that murine granulosa cells are initially resistant to antibody-induced Fas-mediated apoptosis, but will undergo apoptosis when cotreated with TNF and interferon-gamma (IFN) or cycloheximide (CX). Granulosa cells were obtained from follicles of 23-day-old mice 2 days after injection of PMSG. Twenty-four hours after plating, cells were pretreated with either 0 or 200 U/ml IFN, which has been shown to induce Fas antigen expression and is required for Fas-mediated killing in many cell types. At 48 h, cells were treated with 2 microg/ml control IgG, 2 microg/ml anti-Fas antigen antibody (Fas mAb), 10 ng/ml TNF, or Fas mAb and TNF. Cytotoxicity (percent killing) relative to control IgG was determined at 72 h by counting granulosa cells after trypsinization. In the absence of IFN, no cytotoxicity was observed. In the presence of IFN, neither TNF or Fas mAb alone was cytotoxic, but the combination of Fas mAb and TNF resulted in 25% killing (P < 0.05). Fas antigen messenger RNA (mRNA) was detectable in cultures not treated with cytokines and was increased 5-fold by TNF, 2-fold by IFN, and 17-fold by the combination of IFN and TNF. To test whether the presence of a labile inhibitor(s) of Fas-mediated killing in granulosa cells is the cause of resistance to Fas mAb, the protein synthesis inhibitor CX was used. Experiments were performed as described above, except that cells were treated with 0.5 microg/ml CX in conjunction with other treatments at 48 h. Fas mAb treatment in the presence of CX induced 25% cell death without IFN pretreatment and 38% with IFN (P < 0.05). TNF treatment in the presence of CX had no effect alone, but potentiated the effects of Fas mAb, resulting in 56% killing in the absence of IFN and 86% killing in the presence of IFN (P < 0.05). Cells stained positively for DNA fragmentation and annexin V binding, features characteristic of apoptosis. Because initial experiments showed that treatment with TNF alone increased Fas mRNA levels, the effect of pretreating cells for 24 h with TNF before treatment with Fas mAb was tested. Pretreatment with TNF or IFN alone did not promote Fas mAb-mediated killing, but combined pretreatment with TNF and IFN resulted in 25% killing in response to Fas mAb. Treatment of cells with the combination of IFN and TNF induced a 19-fold increase in Fas antigen mRNA levels. Corresponding increases in Fas antigen protein expression on the surface of cells in response to cytokine treatments were detected by immunocytochemistry. Human TNF did not duplicate the effects of mouse TNF in inducing Fas antigen mRNA expression and Fas mAb-induced killing. As human TNF interacts exclusively with the type I, but not the type II, TNF receptor in the mouse, potentiating effects of mouse TNF on the Fas pathway are probably mediated via the type II TNF receptor. The effects of cytokine treatments on levels of mRNA for FAP-1, an inhibitor of Fas-mediated apoptosis, were determined. FAP-1 mRNA was detectable in untreated granulosa cells, and levels were not altered by treatment with TNF and/or IFN. In summary, the Fas-mediated pathway of apoptosis is functional in mouse granulosa cells that are stimulated with IFN and TNF. These cytokines may function at least partially by increasing Fas antigen expression. Granulosa cells appear to have inhibitors of the Fas antigen pathway, as treatment with CX potentiates Fas-mediated death. TNF promotes Fas-mediated killing in the presence and absence of CX. Therefore, TNF is not likely to act simply by increasing Fas antigen expression or decreasing protein inhibitors of the Fas pathway, because TNF remains effec  相似文献   

8.
BACKGROUND: Among the small proteoglycans, biglycan and decorin have been proposed to be potent modulators of TGF-beta-mediated inflammatory kidney diseases. They were considered to become induced during glomerulonephritis and to subsequently inactivate the cytokine. METHODS: Decorin and biglycan as well as their endocytosis receptor were investigated in normal rat renal cortex, in anti-Thy-1 glomerulonephritis, in polycystic kidneys, in the remnant kidney following 5/6-nephrectomy, and in kidneys from the Milan normotensive strain by immunohistochemistry and in situ hybridization. Northern blots were used for the detection of mRNA expression for decorin and biglycan in isolated glomeruli. Functional aspects of the endocytosis of decorin and biglycan were studied in cultured mesangial cells. RESULTS: In the normal adult rat kidney decorin was expressed preferentially by Bowman's capsule and by interstitial connective tissue cells, but only in trace amounts by mesangial cells. In contrast, biglycan was found in tubular epithelial cells, in association with glomerular capillaries, podocytes and occasionally in the mesangium. In the tubulointerstitium of diseased kidneys (polycystic kidneys, 5/6-nephrectomy, kidneys from the Milan normotensive strain) there was a general up-regulation of decorin expression, while biglycan was localized only in distinct foci of fibrotic lesions. Glomerulosclerosis (5/6-nephrectomy, Milan normotensive strain) was associated with an increased staining for both decorin and biglycan within glomeruli. However, even in the anti-Thy-1 model of an acute mesangioproliferative glomerulonephritis where the greatest accumulation of decorin was found there was only a slight enhancement of decorin mRNA in isolated glomeruli. Decorin and biglycan become degraded upon receptor-mediated endocytosis. Immunohistochemical investigations indicated that the pattern of expression of the receptor protein correlated well with the immunolocalization of both decorin and biglycan. In vitro experiments with cultured mesangial cells provided direct evidence for the expression of the receptor and for the cell's capability to endocytose decorin as well as biglycan. CONCLUSIONS: Decorin and biglycan are characterized by a distinct expression pattern in the normal rat kidney, whereas the presence of their endocytosis receptor protein correlates with the expression of both proteoglycans. Decorin is almost completely absent in the normal mesangium. Both proteoglycans become up-regulated in various models of renal disease. The mesangial accumulation of decorin in the anti-Thy-1 glomerulonephritis that is observed in spite of the only slightly enhanced mRNA expression could result from decreased decorin turnover and/or increased mesangial retention.  相似文献   

9.
Because interferon-gamma (IFN gamma) is present in the central nervous system during neurologic diseases associated with inflammation, its effect on endotoxin-induced cytokines was studied. Cerebrospinal fluid (CSF) and serum levels of interleukin (IL)-1beta, IL-6, and tumor necrosis factor-alpha (TNF alpha), their messenger RNA expression in brain areas (hypothalamus, hippocampus, and striatum) and in spleen were evaluated 2 and 8 h after endotoxin [lipopolysaccharide (LPS), 25 microg/rat i.c.v.], IFN gamma (2.5 microg/rat i.c.v.) or after their coadministration in rats. CSF and serum IL-1beta levels were increased by LPS alone and IFN gamma coadministration did not furtherly increase them. IFN gamma potentiated LPS effect on IL-6 and TNF alpha levels in both CSF and serum. LPS and IFN-gamma coadministration did not alter IL-1beta messenger RNA expression induced by LPS in brain areas and in spleen, but it potentiated that of IL-6 and TNF alpha. The present in vivo data show that i.c.v. coadministration of LPS and IFN gamma results in a potentiation of cytokine production (IL-6 and TNF alpha) which may trigger a cascade of events relevant to neurodegenerative processes. This action is independent of IL-1beta because the production of this cytokine is not altered by IFN gamma treatment.  相似文献   

10.
We investigated the effect of TNF alpha, IL-1alpha and IFN gamma on two neuroblastoma (NB) cell lines (SK-N-SH and SK-N-MC). These lines responded differentially to IL-1alpha, TNF alpha and IFN gamma for MCP-1 and IL-8 production and expression of the ICAM-1 and VCAM-1 adhesion molecules. None of the cytokines induced MCP-1 or IL-8 on SK-N-MC cells. Both chemokines were produced in response to IL-1alpha by SK-N-SH cells, while TNF alpha induced mainly MCP-1 production. Addition of IFN gamma decreased IL-8, but not MCP-1 production. These responses correlated with monocyte and neutrophil chemotactic activity in NB culture supernatants. This activity was neutralized by antibodies to IL-8 and MCP-1. The expression of ICAM-1 on SK-N-MC was up-regulated by TNF alpha or IFN gamma, while IL-1alpha also upregulated ICAM-1 on SK-N-SH cells. VCAM-1 expression on SK-N-SH was induced by IL-1alpha and TNF alpha and IFN gamma synergized with TNF alpha in this respect on both NB cell lines. These results suggest that mechanisms for chemokine production and VCAM-1 and ICAM-1 upregulation by inflammatory cytokines differ and IFN gamma, in conjunction with TNF alpha, stimulate neural cell responses (high MCP-1 and VCAM-1 and decreased IL-8) favouring mononuclear cell recruitment.  相似文献   

11.
Oxidized LDL has been previously reported to suppress the expression of genes induced in mononuclear phagocytes by inflammatory stimuli. In this study we extend these findings to demonstrate that the suppressive effects of oxidized LDL vary depending upon the gene being monitored and the stimulus being used to induce or enhance its expression. The expression of a selection of LPS-inducible genes exhibited differential sensitivity to pretreatment with oxidized LDL. Furthermore, the ability of oxidized LDL to suppress gene expression varied markedly with the inducing stimulus used. TNF alpha and IP-10 mRNA expression induced by IFN gamma and IL-2 was markedly more sensitive to suppression by oxidized LDL than that induced by LPS. The cooperative effects of IFN gamma and LPS on the expression of the inducible nitric oxide synthase gene were suppressed by oxidized LDL while the antagonistic effect of IFN gamma on LPS-induced expression of the TNF receptor type II mRNA was not altered. The suppressive activity of LDL was acquired only after extensive oxidation and was localized in the extractable lipid component. These results suggest a potent and direct connection between the oxidative modification of LDL and the chronic inflammation seen in atherogenic lesions. Furthermore, the appreciable selectivity of oxidized LDL in mediating secondary control of cytokine gene expression demonstrates that the active material(s) is targeted to disrupt specific intracellular signaling pathways.  相似文献   

12.
13.
14.
Following our previous results which showed that TGF-beta 1 suppressed the secretion of certain cytokines, we investigated the effects of different endogenous and exogenous factors on cytokine secretion in whole blood cell culture by using an enzyme-linked immunosorbent assay (ELISA) for measurement of cytokine concentrations. Several molecules including dexamethasone, noradrenaline (NA) and ethanol differentially inhibited mitogen-induced cytokine secretion. Dexamethasone and noradrenaline suppressed secretion of IL-2, IFN alpha, IFN gamma, TNF alpha, IL-1 alpha and IL-1 beta. beta-Endorphin and Leu-Enkephalin had no significant influence on cytokine secretion. Suppression of cytokine secretion by TGF-beta 1 was further intensified significantly and dose dependently by addition of noradrenaline. GM-CSF stimulated the secretion of IL-1 alpha, IL-1 beta and TNF gamma, but had no influence on the secretion of IL-2, IFN alpha and IFN gamma. G-CSF, IL-3 and SCF did not significantly influence secretion of all cytokines tested. Thus, endogenous and exogenous factors differentially influence cytokine secretion by immunocompetent cells.  相似文献   

15.
Correlation studies between cytokines expressed in islets and autoimmune diabetes development in NOD mice and BB rats have demonstrated that beta-cell destructive insulitis is associated with increased expression of proinflammatory cytokines (IL-1, TNF alpha, and IFN alpha) and type 1 cytokines (IFN gamma, TNF beta, IL-2 and IL-12), whereas non-destructive (benign) insulitis is associated with increased expression of type 2 cytokines (IL-4 and IL-10) and the type 3 cytokine (TGF beta). Cytokines (IL-1, TNF alpha, TNF beta and IFN gamma) may be directly cytotoxic to beta-cells by inducing nitric oxide and oxygen free radicals in the beta-cells. In addition, cytokines may sensitize beta-cells to T-cell-mediated cytotoxicity in vivo by upregulating MHC class I expression on the beta-cells (an action of IFN gamma), and inducing Fas (CD95) expression on beta-cells (actions of IL-1, and possibly TNF alpha and IFN gamma). Transgenic expression of cytokines in beta-cells of non-diabetes-prone mice and NOD mice has suggested pathogenic roles for IFN alpha, IFN gamma, IL-2 and IL-10 in insulin-dependent diabetes mellitus (IDDM) development, and protective roles for IL-4, IL-6 and TNF alpha. Systemic administrations of a wide variety of cytokines can prevent IDDM development in NOD mice and/or BB rats; however, a given cytokine may retard or accelerate IDDM development, depending on the dose and frequency of administration, and the age and the diabetes-prone animal model studied (NOD mouse or BB rat). Islet-reactive CD4+ T-cell lines and clones that adoptively transfer IDDM into young NOD mice have a Th1 phenotype (IFN gamma-producing), but other islet-specific Th1 clones that produce TGF beta can adoptively transfer protection against IDDM in NOD mice. NOD mice with targeted deletions of IL-12 and IFN gamma genes still develop IDDM, albeit delayed and slightly less often. In contrast, post-natal deletions of IL-12 and IFN gamma, also IL-1, TNF alpha, IL-2, and IL-6--by systemic administrations of neutralizing antibodies, soluble receptors and receptor antagonists, and receptor-targeted cytotoxic drugs--significantly decrease IDDM incidence in NOD mice and/or BB rats. These cytokine deletion studies have provided the best evidence for pathologic roles for proinflammatory cytokines (IL-1, TNF alpha, and IL-6) and type 1 cytokines (IFN gamma, IL-2 and IL-12) in IDDM development.  相似文献   

16.
17.
18.
19.
20.
The antiproliferative activity of 5-fluorouracil (5-FUra) and 5'-deoxy-5-fluorouridine (5'-dFUrd), used in combination with typical cytokines and growth factors, was investigated in mouse colon 26 carcinoma cells. Tumor necrosis factor alpha (TNF alpha), interleukin-1 alpha (IL-1 alpha), and interferon gamma (IFN gamma) at low doses showing < 50% inhibition of cell growth by themselves enhanced the susceptibility of the cells to the activity of 5'-dFUrd. In particular, a mixture of these cytokines greatly enhanced the activity of 5'-dFUrd and 5-FUra by up to 12.4- and 2.7-fold, respectively, whereas the activity of other cytostatics was only slightly changed (< 1.5-fold). Basic fibroblast growth factor also increased the susceptibility, but only to 5'-dFUrd. This preferential enhancement of the activity of 5'-dFUrd would be due to induction by the cytokines of uridine phosphorylase (Urd Pase), by which 5'-dFUrd is converted to 5-FUra. TNF alpha, IL-1 alpha, IFN gamma, and a mixture of these factors increased the enzyme activity by up to 3.7-fold in colon 26 cells. Consequently, the anabolism of 5'-dFUrd to fluoronucleotides and the incorporation of 5-FUra into RNA in colon 26 cells were increased by TNF alpha treatment. In addition, the increase by the cytokine mixture in the susceptibility to 5'-dFUrd was abolished by an inhibitor of Urd Pase, 2,2'-anhydro-5-ethyluridine. These results indicate that induction of Urd Pase activity by cytokines is a critical event that increases the susceptibility to 5'-dFUrd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号