首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
用高纯Al粉体和Y2O3粉体(Al-Y2O3粉体)为原料采用固相反应法制备了YAG陶瓷. Al-Y2O3粉体高能经过球磨,煅烧生成YAG粉体,再真空烧结制备高致密YAG陶瓷.采用DTA-TG对球磨Al-Y2O3粉体进行分析,采用XRD、SEM对球磨的Al-Y2O3粉体、YAG粉体及YAG陶瓷进行了表征.实验表明:Al-Y2O3粉体在~569℃时,Al粉强烈氧化,并与Y2O3粉反应,600℃煅烧出现YAM相,随煅烧温度升高出现YAP相,1200℃煅烧生成YAG粉体.成型YAG素坯在1750℃保温2h真空烧结出YAG相陶瓷,YAG陶瓷相对密度可达98.6%,晶粒生长均匀,晶粒尺寸为8~10μm.  相似文献   

2.
硫酸盐共沉淀法制备YAG粉体及透明陶瓷   总被引:1,自引:0,他引:1  
以自制Y2(SO4)3和NH4Al(SO4)2·12H2O混合溶液为母盐,碳酸氢铵为沉淀剂,采用共沉淀法制备了以YAG相为主要成分的混合粉体.研究表明,先驱体化学成分为[NH4AlO(OH)HCO3]·0.3[Y2(CO3)3·2H2O].先驱体经1200℃、2h煅烧,pH=7.2时产物以YAG相为混合粉体的主要成分,pH=8.5时Y2O3为主要成分.在较低温度下(低于1500℃),以硫酸盐为母盐制备的YAG混合粉体烧结性低于同样条件下硝酸盐为母盐合成的粉体烧结性.1100℃煅烧2h后合成的YAG混合粉体(pH=7.2),经1700℃真空烧结5h,获得了完全透明的YAG陶瓷,可见光区的最大透光率约为60%.  相似文献   

3.
用高纯Al粉体和Y2O3粉体(Al-Y2O3粉体)为原料采用固相反应法制备了YAG陶瓷. Al-Y2O3粉体高能经过球磨, 煅烧生成YAG粉体, 再真空烧结制备高致密YAG陶瓷. 采用DTA-TG对球磨Al-Y2O3粉体进行分析, 采用XRD、SEM对球磨的Al-Y2O3粉体、YAG粉体及YAG陶瓷进行了表征. 实验表明: Al-Y2O3粉体在~569℃时, Al粉强烈氧化, 并与Y2O3粉反应, 600℃煅烧出现YAM相, 随煅烧温度升高出现YAP相, 1200℃煅烧生成YAG粉体. 成型YAG素坯在1750℃保温2h真空烧结出YAG相陶瓷, YAG陶瓷相对密度可达98.6%, 晶粒生长均匀, 晶粒尺寸为810μm.  相似文献   

4.
王志伟  施雨湘 《功能材料》2005,36(11):1794-1797
(Ti-50%(原子分数)AD-10%Al2O3粉体经过球磨的机械活化(MA)后,用放电等离子烧结(SPS)工艺,在烧结的同时进行固化。采用机械活化-放电等离子烧结(MA—SPS)的方法原位烧结制备TiAl—Al2O3块体纳米材料。球磨前后,(Ti-50%(原子分数)AD-10%Al2O3粉体的衍射图(XRD)相似。MA后得到晶粒度〈25nm的纳米粉体,其中Al2O3起到机械活化和细化晶粒的作用,促使粉体快速纳米化。纳米粉体在温度低于800℃、烧结时间〈5min的烧结参数下,烧结成TiAl纳米合金。TiAl纳米合金的微观结构表明,合金有γ-TiAl和α2—Ti3Al双相组织。SPS原位烧结后,得到密度为3.73g/cm^3的(γ+α2)双相组织,组成相的晶粒度〈130nm。  相似文献   

5.
采用X射线衍射仪、电子扫描和DTA差热分析等手段,研究了在Ar气氛保护下Al-ZnO粉高能球磨过程中发生的机械合金化反应,分析了不同球磨时间对粉体成分、形貌、热稳定性的影响及对生成Al2O3粒子的反应进程和颗粒大小的影响.结果表明,高能球磨是一种有效实现Al-ZnO固相置换反应的方法,经过30 h球磨后,Al-ZnO完全发生机械合金化反应,60h后可获得Zn包覆的纳米级的Al2O3颗粒,置换生成Zn的熔点降低到398℃.  相似文献   

6.
以TiO2、Al、C(石墨)为原料,首先采用高能球磨引导铝热反应合成了Al2O3-TiC纳米复合粉体,然后采用放电等离子体烧结纳米复合粉体制备了Al2O3-TiC复合材料.结果表明,在氩气氛围下高能球磨3h后,原料粉末就发生了铝热反应,合成的Al2O3-TiC复合粉体粒子尺寸大约在100nm左右.采用SPS技术在1450℃保温4min烧结的试样致密度达99.6%,并且结构精细(大部分晶粒<1μm),两相分布比较均匀,有较好的力学性能和电导性能,抗弯强度为650+21MPa,硬度为19.1±0.2GPa,断裂韧性为4.5±0.2MPa·m1/2,电导率为2.3828×105Ω-1.m-1.  相似文献   

7.
用高纯Al粉体和Y2O3粉体(Al-Y2O3粉体)为原料采用固相反应法制备了YAG陶瓷. Al-Y2O3粉体高能经过球磨, 煅烧生成YAG粉体, 再真空烧结制备高致密YAG陶瓷. 采用DTA-TG对球磨Al-Y2O3粉体进行分析, 采用XRD、SEM对球磨的Al-Y2O3粉体、YAG粉体及YAG陶瓷进行了表征. 实验表明: Al-Y2O3粉体在~569℃时, Al粉强烈氧化, 并与Y2O3粉反应, 600℃煅烧出现YAM相, 随煅烧温度升高出现YAP相, 1200℃煅烧生成YAG粉体. 成型YAG素坯在1750℃保温2h真空烧结出YAG相陶瓷, YAG陶瓷相对密度可达98.6%, 晶粒生长均匀, 晶粒尺寸为810μm.  相似文献   

8.
在微米氮化铝粉体中添加含量为4%的Y2O3和不同含量的纳米AlN粉体制备氮化铝陶瓷,研究了Y2O3和纳米AlN协同作用对微米氮化铝陶瓷烧结性能和热传导性能的影响。结果表明,Y2O3优先与纳米AlN粉体表面的Al2O3反应生成活性较高的第二相Al5Y3O12,相比于Y2O3与微米AlN粉体表面Al2O3反应生成的Al5Y3O12,具有更低的熔化温度及更好的流动性;同时,纳米AlN粉体的高比表面能也促进氮化铝陶瓷的致密化进程。二者的协同作用有效地促进氮化铝陶瓷的致密烧结,改善第二相的微观分布,从而能在较低的烧结温度下获得具有较高热导率的氮化铝陶瓷。当Y2O3和纳米AlN粉体的添加量(质量分数)分别为4%和1.5%时,在1800℃烧结得到的氮化铝陶瓷密度为3.26 g·cm-3,第二相以连续相的形式分布于氮化铝晶界处,热导率为151.75 W/(m.K)。  相似文献   

9.
Ti-Al-Al2O3纳米粉体的机械活化-放电等离子烧结   总被引:2,自引:0,他引:2  
王志伟 《材料保护》2005,38(9):54-56
TiAl基合金是很有发展潜力的高温结构材料,为实现快速高效制备此材料,采用新型的机械活化-放电等离子烧结(MA-SPS)制备纳米材料的有效方法,原位制备Ti-Al金属间化合物Ti-47%Al-10%Al2O3(Al为原子分数,Al2O3为质量分数)材料.介绍了放电等离子烧结这种新兴的纳米固体材料制备技术的特点,结合Ti-Al基合金的具体制备工艺,对MA-SPS的特征予以详细分析研究.通过X射线衍射、扫描电镜、透射电镜等分析,经机械球磨活化后,得到晶粒度小于24 nm的纳米单质元素粉体,为后续原位烧结提供合适的烧结原料.其中添加的Al2O3起到细化晶粒、促进纳米化和机械活化、提高出粉率等作用.纳米粉体在合适的参数下经放电等离子烧结后,可得到致密度达98.7%的(TiAl Ti3Al)理想双相组织,其成分的晶粒度小于91 nm,成为纳米固体材料.  相似文献   

10.
以Y(NO3)3.6H2O、Al(NO3)3.9H2O和柠檬酸为原料,采用凝胶燃烧法合成单相钇铝石榴石(Y3Al5O12,YAG)纳米粉体。采用红外光谱、差热分析、X射线衍射、扫描电镜等测试手段对前躯体干凝胶和YAG粉体进行表征,探讨溶胶-凝胶的均质化转变以及YAG相的结晶温度等。结果表明:柠檬酸与Y3+和Al3+以单齿方式进行络合,实现了溶胶-凝胶的均质化转变;前躯体粉末于750℃低温下开始直接由无定形态转变为立方晶系YAG相,没有YAlO3和Y4Al2O9等杂相存在;900℃煅烧2 h得到颗粒呈类球形状,粒径为50 nm左右的YAG粉体。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号