首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Crystal and molecular structures of adducts of uranyl pivaloyltrifluoroacetonate with hexamethylphosphoramide [UO2(PTFA)2(HMPA)] (I) and of uranyl trifluoroacetylacetonate with trimethyl phosphate [UO2(TFA)2(TMP)] (II) were determined. Compound I crystallizes in the monoclinic system, space group P21/n; a = 16.9384(3), b = 9.1090(2), c = 20.9844(4) Å, β = 101.5337(10)°, V = 3172.34(11) Å3 (at 100 K); Z = 4. Compound II crystallizes in the rhombic system, space group Pbca; a = 17.8214(4), b = 7.7786(2), c = 30.9176(7) Å, V = 4285.97(18) Å3 (at 100 K); Z = 8. In both cases, the cis isomer in which the neutral ligand is located between the trifluoromethyl groups is realized. Compound I differing from II by the stronger branching of ligand periphery is characterized by stronger structural deformations in the crystal.  相似文献   

2.
Two new U(VI) compounds, [((CH3)2CHNH3)(CH3NH3)][(UO2)2(CrO4)3] (1) and [CH3NH3][(UO2)· (SO4)(OH)] (2), were prepared by combining hydrothermal synthesis with isothermal evaporation. Compound 1 crystallizes in the monoclinic system, space group Р21, a = 9.3335(19), b = 10.641(2), c = 9.436(2) Å, β = 94.040(4)°. Compound 2 crystallizes in the rhombic system, space group Рbca, a = 11.5951(8), b = 9.2848(6), c = 14.5565(9) Å. The structures of the compounds were solved by the direct methods and refined to R1 = 0.041 [for 5565 reflections with Fo > 4σ(Fo)] and 0.033 [for 1792 reflections with Fo > 4σ(Fo)] for 1 and 2, respectively. Single crystal measurements were performed at 296 and 100 K for 1 and 2, respectively. The crystal structure of 1 is based on [(UO2)2(CrO4)3]2– layers, and that of 2, on [(UO2)(SO4)(OH)] layers. Both kinds of layers are constructed in accordance with a common principle and are topologically similar. Protonated isopropylamine and methylamine molecules are arranged between the layers in 1, and protonated methylamine molecules, in 2. Compound 1 is the second known example of a U(VI) compound templated with two different organic molecules simultaneously.  相似文献   

3.
The crystal structure of the semiconductor compound CuMn 2 InSe 4 was analysed using X-ray powder diffraction data. CuMn 2 InSe 4 crystallizes, with a stannite structure, in the tetragonal space group I\(\boldsymbol {\overline {4}}\)2m (No. 121), Z = 2, with unit cell parameters a = 5.8111(2) Å, c = 11.5739(8) Å and V = 390.84(3) Å 3 . The refinement of 28 instrumental and structural parameters led to R p = 8.1%, R w p = 10.5%, R e x p = 6.5% and S = 1.6, for 86 independent reflections.  相似文献   

4.
This study reports the effect of coronene (C24H12) addition on some superconducting properties such as critical temperature (Tc), critical current density (Jc), flux pinning force density (Fp), irreversibility field (Hirr), upper critical magnetic field (Hc2), and activation energy (U0), of bulk MgB2 superconductor by means of magnetisation and magnetoresistivity measurements. Disk-shaped polycrystalline MgB2 samples with varying C24H12 contents of 0, 2, 4, 6, 8, 10 wt%, were produced at 850 °C in Ar atmosphere. The obtained results show an increase in field-Jc values at 10 and 20 K resulting from the strengthened flux pinning, and a decrease in critical temperature (Tc) because of C substitution into MgB2 lattice, with increasing amount of C24H12 powder. The Hc2(0) and Hirr(0) values are respectively found as 144, 181, 172 kOe, and 128, 161, 145 kOe for pure, 4 wt% and 10 wt% C24H12 added samples. The U0 depending on the magnetic field curves were plotted using thermally activated flux flow model. The maximum U0 values are respectively obtained as 0.20, 0.23 and 0.12 eV at 30 kOe for pure, 4 wt% and 10 wt% C24H12 added samples. As a result, the superconducting properties of bulk MgB2 at high fields was improved using C24H12, active carbon source addition, because of the presence of uniformly dispersed C particles with nanometer order of magnitude, and acting as effective pinning centres in MgB2 structure.  相似文献   

5.
The nature of the second magnetization peak (SMP) appearing on the dc magnetic hysteresis curves of superconducting single crystals with random pinning is still under debate. Many interesting SMP models and mechanisms were proposed and considered so far, and it is believed at present that this effect is system dependent. We analyzed the dc magnetization curves and the magnetic relaxation in the SMP domain for various single-crystal specimens (superconducting cuprates and iron-based superconductors), of different pinning strengths, with the external magnetic field H oriented along the crystallographic c axis or perpendicular to it. The sample independent aspects revealed by the relaxation results are the absence of single-vortex collective pinning around the SMP onset field and the sign changing of the vortex creep exponent between the onset field and the peak field. This general behavior supports strongly the pinning-induced disordering of the low-H quasi-ordered vortex solid as the actual scenario for the SMP.  相似文献   

6.
The de-pinning or irreversibility lines were determined by ac susceptibility, magnetization, radio-frequency proximity detector oscillator (PDO), and resistivity methods in Ba(Fe0.92Co0.08)2As2 ( T c = 23.2 K), Ba(Fe0.95Ni0.05)2As2 ( T c = 20.4 K), and Ba(Fe0.94Ni0.06)2As2 ( T c = 18.5 K) bulk superconductors in ac, dc, and pulsed magnetic fields up to 65 T. A new method of extracting the irreversibility fields from the radio-frequency proximity detector oscillator induction technique is described. Wide temperature broadening of the irreversibility lines, for any given combination of ac and dc fields, is dependent on the time frame of measurement. Increasing the magnetic field sweep rate (dH/dt) shifts the irreversibility lines to higher temperatures up to about dH/d t = 40,000 Oe/s; for higher dH/dt, there is little impact on the irreversibility line. There is an excellent data match between the irreversibility fields obtained from magnetization hysteresis loops, PDO, and ac susceptibility measurements, but not from resistivity measurements in these materials. Lower critical field vs. temperature phase diagrams are measured. Their very low values near 0 T indicate that these materials are in mixed state in nonzero magnetic fields, and yet the strength of the vortex pinning enables very high irreversibility fields, as high as 51 T at 1.5 K for the Ba(Fe0.92Co0.08)2As2 polycrystalline sample, showing a promise for liquid helium temperature applications.  相似文献   

7.
We have reviewed the methods of extracting current density dependence of the effective activation energy Ueff(J) from experimental data, including transport measurements and magnetic relaxations. Then we applied the method proposed by Maley etc. on our single-phase HgBaCaCuO-1223 sample to obtain the effective activation energy. The effective activation energy Ueff(J, H = 1~T) is extracted from the magnetization relaxation data. On the other hand, Ueff(J) can be theoretically estimated for the model of a sinusoidal washboard potential in superconductors. By comparing the two results we believe that the single curve obtained in the former way can be seen as real current density dependence of effective activation energy Ueff(J). In addition, we have analyzed the reasons why the magnetic decay data at various temperatures can be scaled onto a single curve. The pinning mechanism in the measured temperature range does not change, and the activation energy depends separately on the three variables: T, B, and J are thought as two important factors for this. In the temperature close to zero and near Tc, thermally assisted flux motion would no longer valid since other processes predominate.  相似文献   

8.
In this paper, we investigate the dynamical spin susceptibility in the bi-directional charge density wave (BCDW) state by adopting a random-phase approximation. In the BCDW state, we find that no spin resonance exists and only a broad commensurate peak appears for the frequency dependence of the dynamical spin susceptibility at Q = (π,π), though a low-energy spin gap feature can also be found as in the superconducting state. While the “hourglass” type of the dispersion for the BCDW state bears some similarities with that in the superconducting state, the momentum distribution of Im χ +?(Q,ω) is just the opposite with the incommensurate peaks lying along the diagonal direction for the energy below ω c and along the axial direction above ω c . In the coexistence of SC and BCDW, the frequency dependence of the dynamical spin susceptibility at Q = (π,π) generally shows the two-peak structure, reflecting two energy scales of the spin excitations. These unique features may serve as signatures to verify whether or not the BCDW state is responsible for the formation of the Fermi arcs.  相似文献   

9.
The magnetization curves and hysteresis loops of Fe, Fe90N10, Fe95Zr5, Fe85Zr5N10, and Fe77Zr7N16 films were measured for determining coercive field Hc, saturation magnetization Ms, and the rms fluctuation of local magnetic-anisotropy field a1/2Ha of these iron-based materials. A model approximation with empirical second-order polynomial and Pareto chart clearly demonstrates the influence of the grain size, anisotropy field a1/2Ha, and saturation magnetization on the coercive field.  相似文献   

10.
11.
The exchange bias (EB) training effect, referring to the exchange field (H E) and/or the coercivity (H C) decreasing with the magnetic cycle (n), is often accompanied with EB. Usually, the EB training effect has different types, showing that H C1 (coercive field at the descending branch) and H C2 (coercive field at the ascending branch) change with n differently. In order to understand the origin producing the training type, a phenomenological model is therefore proposed. According to this model, how H C1 (or H C2) changes with n is determined by the change of pinning magnetization at the descending (or ascending) branch during the training process. For verifying the validity of our model, various experimental training results with respect to different exchange-biased systems are selected for fitting and all the fitting results are nearly perfect.  相似文献   

12.
We study the magnetic field vs. temperature (HT) and pressure vs. temperature (PT) phase diagrams of the T c ≈ 5.5 K superconducting phase in Pd x Bi2Te3 (x ≈ 1) using electrical resistivity versus temperature measurements at various applied magnetic fields (H) and magnetic susceptibility versus temperature measurements at various applied magnetic fields (H) and pressure (P). The HT phase diagram has an initial upward curvature as observed in some unconventional superconductors. The critical field extrapolated to T = 0 K is H c (0) ≈ 6–10 kOe. The T c is suppressed approximately linearly with pressure at a rate d T c /d P ≈ ?0.28 K/GPa.  相似文献   

13.
Previously unknown arsenates of hexavalent U, Np, and Pu, (H3O)[(UO2)(AsO4)]·3H2O (I), (H3O)· [(NpO2)(AsO4)]·3H2O (II), and (H3O)[(PuO2)(AsO4)]·3H2O (III), were synthesized under hydrothermal conditions. The crystal structure of the compounds was determined, and their absorption spectra were measured. The compounds crystallize in tetragonal space group P4/nmm.  相似文献   

14.
The transition mechanism in high temperature cuprate superconductors is an outstanding puzzle. A previous suggestion on the role of non-linear local lattice instability modes on the microscopic pairing mechanism in high temperature cuprate superconductors (Lee, J. Supercond. Nov. Magn. 23(3), 333; 2009) is re-examined to provide a viable mechanism for superconductivity in these cuprates via an unusual lattice vibration in which an electron is predominantly interacting with a non-linear Q 2 mode of the oxygen clusters in the CuO2 planes. It is shown that the interaction has explicit d-wave symmetry and leads to an indirect coupling of d-wave symmetry between electrons. As a follow-up of Lee (J. Supercond. Nov. Magn. 23(3), 333; 2009), in this paper, we report detailed derivation of the superconducting gap equation and numerical solutions for the transition temperature as inherently integrated into the so-called extended Hubbard model (EHM). A unique feature in the EHM is that the transition temperature has an inherent k-dependence. In addition, superconducting gap solutions are restrained to specific regions in the first Brillouin zone (1BZ). It is very feasible to expect that the EHM naturally inherits a huge parameter space in which experimentally measured results, such as the well-known superconducting dome and the phase diagram from electronic Raman scattering (Sacuto et al., Rep. Prog. Phys. 76(2), 022502; 2013) can be accommodated. The EHM model hence offers a viable venue to search for or confirm any signature in k-point-sensitive experimental measurements.  相似文献   

15.
The Co1?x Zn x (x=0.4?0.5) nanorods were synthesized via an AC electrochemical deposition method into anodized aluminum oxide (AAO) templates at different voltages ranging from 10 to 18 V, and nanorods of varying concentrations of Co and Zn were obtained. The characterization tools were used to examine different aspects of nanorods, e.g., shape, size, morphology, chemical composition, and magnetic behavior. Scanning electron microscope (SEM) images show that CoZn nanorods have length L=1μm and diameter d=50 nm. The grain size was calculated to be 25.4 nm using an X-ray diffraction (XRD) technique. The XRD also shows some other phases of ZnCoO. The M?H loops measured by a vibrating sample magnetometer (VSM) at room temperature show pure ferromagnetic behavior at all AC potentials. The nanorods show magnetic isotropic behavior due to strong magnetic interactions and presence of random nanorods. The potential-dependent coercivity H c and saturation magnetization M s show a non-linear curve which is explained on the basis of magnetic islands and domain wall pinning. This study is useful to tune the magnetic properties of nanorods by a simple and low-cost technique.  相似文献   

16.
In this work, we studied in detail the magnetic and magnetocaloric properties of the La0.7Ca0.2Ba0.1MnO3 compound according to the phenomenological model. Based on this model, the magnetocaloric parameters such as the maximum of the magnetic entropy change ΔS M and the relative cooling power (RCP) have been determined from the magnetization data as a function of temperature at several magnetic fields. The theoretical predictions are found to closely agree with the experimental measurements, which make our sample a suitable candidate for refrigeration near room temperature. In addition, field dependences of \({{\Delta } S}_{\mathrm {M}}^{\max }\) and RCP can be expressed by the power laws \({\Delta S}_{\mathrm {M}}^{\max }\approx a\)(μ 0 H) n and RCP ≈b(μ 0 H) m , where a and b are coefficients and n and m are the field exponents, respectively. Moreover, phenomenological universal curves of entropy change confirm the second-order phase transition.  相似文献   

17.
The critical behavior of perovskite manganite La0.67Ba0.33Mn0.95Fe0.05O3 at the ferromagnetic–paramagnetic has been analyzed. The results show that the sample exhibited the second-order magnetic phase transition. The estimated critical exponents derived from the magnetic data using various such as modified d’Arrott plot Kouvel–Fisher method and critical magnetization M(T C, H). The critical exponents values for the La0.67Ba0.33Mn0.95Fe0.05O3 are close to those expected from the mean field model β = 0.504 ± 0.01 with T C = 275661 ± 0.447 (from the temperature dependence of the spontaneous magnetization below T C ), γ = 1.013 ± 0.017 with T C = 276132 ± 0.452 (from the temperature dependence of the inverse initial susceptibility above T C ), and δ = 3.0403 ± 0.0003. Moreover, the critical exponents also obey the single scaling equation of M(H, ε) = |ε| β f ±(H/|ε| β+γ ).  相似文献   

18.
Kinetics of defects formation, reaction process and formation of solid solution in powder mixtures of ZnO and MnO2 induced by prolonged mechanical treatment (MT) have been investigated (X-ray, FTIR, EPR). At MT in zones of deformation-destruction the different defects (\( {\text{V}}_{{\text{Zn}}}^ - :{\text{Zn}}_{\text{i}}^{\text{0}} \) (I), \( {\text{V}}_{{\text{Zn}}}^ - \) (II), and \( {\text{(V}}_{{\text{Zn}}}^ - {\text{)}}_{\text{2}}^ - \) (III) centers at all) are forming. The defects have various physical and chemical properties, and have different activation energies of annealing, Eact The part of these defects is responsible for the processes of hydration and carbonation of samples. In turn, the formation of defects is accompanied by development of various mechanothermical processes, which increase temperature of the sample, T MT, with the increasing of duration of MT, t MT. The increasing of t MT activates the reactionary processes: promotes a consecutive annealing the «low-temperature» defects having small values of Eact (I, II and III) and also leads to formation of Mn2+-doped Zn(OH)2. With the further increase of t MT, the process of MT is accompanied by an increasing of temperature of samples up to equilibrium, T eq and accumulation of “high-temperature” defects in the sample. As a result, in the sample the conditions for intensification of volumetric diffusion processes and formation of Mn2+-doped ZnO were created.  相似文献   

19.
La0.45Dy0.05Ca0.5Mn0.9V0.1O3, prepared by solid-state route, was characterized using x-ray diffraction at room temperature. The Rietveld refinement shows that the sample crystallizes in orthorhombic structure with Pbnm space group. A secondary phase LaVO4 has been also detected. The temperature dependence of the magnetization was investigated to determine the characteristics of the magnetic transition. The sample exhibits a paramagnetic-ferromagnetic transition (PM-FM) at T C = 81 ± 0.7 K when temperature decreases. The study of the inverse of susceptibility reveals the presence of ferromagnetic clusters in the paramagnetic region. A metamagnetic transition was observed from the M(H) curves and the magnetic entropy change was calculated from magnetization curves at different temperatures in order to evaluate the magnetocaloric effect.  相似文献   

20.
We present a theoretical study of the in-plane resistivity ρ a b (T) and Hall coefficient R H (T) within the polaronic model and precursor pairing scenario by considering a two-component charge carrier picture in the normal state of high-temperature superconducting cuprates (HTSC). Here, we use a Boltzmann-equation approach and extended BCS-like model to compute ρ a b (T) and R H (T) in the τ-approximation. The opening of the pseudogap (PG) in the normal state of the cuprates should affect their transport properties. We have found that the transition to the PG regime and the effective conductivity of charge carriers in the normal state are responsible for the pronounced non-linear temperature dependence of ρ a b and R H . With the two-component model analysis, we conclude that the opening of the BCS-like PG, while the non-linear temperature dependence of ρ a b and R H could be understood as a consequence of pairing fluctuations in the PG state of cuprate superconductors. The calculated results for ρ a b (T) and R H (T) were compared with the experimental data obtained for various hole-doped cuprates. For all the considered cases, a good quantitative agreement was found between theory and experimental data. We also show that the energy scales of the binding energies of charge carriers are identified by PG crossover temperature on the cuprate phase diagram.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号