首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The magnetoresistance and irreversibility fields of commercial bismuth-based 1G tape were studied on the basis of the temperature dependencies of the magnetoresistance at the two relative orientations of magnetic field and superconductor plane. The critical temperatures of this tape are the following: T c50 % = 110.3 K and T c0 = 109.9 K, and the width of superconducting transition is ΔT = 0.5 K. The widths of the transition to the superconducting state versus applied magnetic fields were derived for both orientations. The experimental data were fitted using the formula ΔT = C H m + ΔT 0. The irreversibility field values were obtained and successfully fitted as a function of temperature. At 77 K, they were found to amount to H i r r = 72.8 kOe and H i r r = 5.5 kOe for the parallel and perpendicular directions, respectively.  相似文献   

2.
We report bulk superconductivity at 2.5 K in LaO0.5F0.5BiSe2 compound through the DC magnetic susceptibility and electrical resistivity measurements. The synthesized LaO0.5F0.5BiSe2 compound is crystallized in tetragonal structure with space group P4/nmm and Reitveld refined lattice parameters are a = 4.15(1) Å and c = 14.02(2) Å. The lower critical field of H c1 = 40 Oe, at temperature 2 K is estimated through the low field magnetization measurements. The LaO0.5F0.5BiSe2 compound showed metallic normal state electrical resistivity with residual resistivity value of 1.35 m Ω cm. The compound is a type-II superconductor, and the estimated H c2(0) value obtained by WHH formula is above 20 kOe for 90 % ρ n criteria. The superconducting transition temperature decreases with applied pressure till around 1.68 GPa and with further higher pressures a high- T c phase emerges with possible onset T c of above 5 K for 2.5 GPa.  相似文献   

3.
Modification of σ and π bands was studied in MgB2 by doping 3, 6 and 9 wt% of C and Fe, respectively. The samples synthesized by a solid-state route were characterized by XRD, and magnetization (M) and resistivity (ρ) measurements were in the temperature range (T) 4.2–300 K and magnetic field range (B) 0–12 T, respectively. The decrease (increase) of the lattice parameter a with C (Fe) doping, consistent with B (Mg) site substitution, confirms the expected changes in σ (π) bands. This is supported by the fact that normal-state ρ(T) of all the samples can be fitted by a two-band model and the scattering rates in both the bands are found to be dependent on the dopant. The influence of C and Fe doping on various superconducting properties of the host MgB2 is also found to be significantly different. For instance, in the presence of magnetic field, Fe doping shows a much larger broadening of the superconducting transition when compared to C doping. The critical current density (J C(B)) at 4.2 K vanishes for C (Fe) doping at around T~12 (~3). It is shown that the band modification and the superconducting properties are correlated.  相似文献   

4.
The effect of CdTe addition on YBa2Cu3O7?δ (CdTe) x (x = 0–0.10) has been studied. XRD patterns showed the presence of impurities including CdTe for x ≥ 0.05 wt%. The resistance versus temperature curves showed metallic behavior for all samples. The onset temperature T c onset for all samples is between 90 and 92 K. The superconducting transition width, ΔT c = 4 K for all samples except for x = 0.1 wt% where ΔT c = 6 K. The superconducting transition determined by AC susceptibility measurement also showed little change in \(T_{\mathrm {c}\chi ^{\prime }}\) (between 89 and 92 K). However, the peak temperature T p of the imaginary part of the susceptibility χ″, showed a drastic decrease for samples with x > 0.05 wt%. This indicated that the superconducting grains were strongly decoupled for x > 0.05 wt% due to the impurities as observed in the XRD pattern. The intergrain critical current density, J c at T p for the x = 0 sample is J c (82 K) = 17 A cm?2. These results can be useful in the fabrication of semiconductor/YBCO superconductor hybrid systems.  相似文献   

5.
We study the magnetic field vs. temperature (HT) and pressure vs. temperature (PT) phase diagrams of the T c ≈ 5.5 K superconducting phase in Pd x Bi2Te3 (x ≈ 1) using electrical resistivity versus temperature measurements at various applied magnetic fields (H) and magnetic susceptibility versus temperature measurements at various applied magnetic fields (H) and pressure (P). The HT phase diagram has an initial upward curvature as observed in some unconventional superconductors. The critical field extrapolated to T = 0 K is H c (0) ≈ 6–10 kOe. The T c is suppressed approximately linearly with pressure at a rate d T c /d P ≈ ?0.28 K/GPa.  相似文献   

6.
Magnetization and 57Fe Mössbauer effect spectroscopy (MS) studies of Ba(Fe1?x Ni x )2As2 single crystals (x=0 to 0.054) at temperatures (5 K to 300 K) have been performed. Magnetic measurements show that for BaFe2As2 the magnetic moment decreases below T N=136 K. T N is suppressed monotonically by Ni doping. On the other hand, for higher x values the magnetic moment increases below T N. Unexpectedly for x=0.024 (T N=67 K), the virgin zero-field-cooled (ZFC) curve is higher than that of field-cooled (FC) one below 48 K. The magnetic MS spectra of this sample are composed of a superposition of two subspectra, corresponding to commensurate and incommensurate field distributions. The average magnetic hyperfine field H eff decreases with T and becomes zero at 80 K. For higher x values, the samples become superconducting at T C=15.5 and 19 K for x=0.046 and 0.054, respectively. For both samples below T C, the FC curves are positive (the paramagnetic Meissner effect) up to applied field of H~15 Oe and the susceptibility is inversely proportional to H. The MS spectra below and above T C are almost identical, indicating that the MS parameters are not sensitive enough to detect the superconducting state. The peculiar phenomena observed are attributed to disorder induced by the presence of Ni atoms in the Fe sublattice.  相似文献   

7.
We report on superconducting properties of high-quality single crystals of F-substituted NdOBiS2 using low-temperature magnetization and transport measurements. Using the mixture of CsCl and KCl as the flux, we have synthesized our single crystals. This compound exhibits bulk superconductivity with a transition temperature of about T c~4.6 K. The critical current density J c as a function of temperature has been derived and decreases with the increasing temperature. We construct the phase diagram H c2(T). The zero-temperature value for \(H_{\mathrm {c2}}^{B\parallel c}\) for value for \(T_{c}^{90~\%}\) and \(T_{c}^{0~\%}\) is estimated to be approximately 2.17 and 1.72 T respectively by using Werthamer-Helfand-Hohenberg model.  相似文献   

8.
Bi17Pb0.3Sr2Ca2Cu3O10+δ superconductor samples were synthesized by the conventional solid-state reaction method. To study the effects of the addition of yttrium nanoparticles to the superconducting system, nano Y2O3 was introduced by small weight percentages (0.2, 0.4, 0.6, 0.8, and 1.0 wt%) in the first step of the synthesis process. Phase identification and microstructural characterization of the samples were investigated using X-ray diffraction and scanning electronic microscopy (SEM). Energydispersive X-ray spectroscopy (EDX) analysis was utilized to confirm the presence of the desired elements in the chemical composition of the samples. Moreover, DC electrical resistivity as a function of the temperature, critical current density (J c), AC magnetic susceptibility, and DC magnetization measurements were carried to evaluate the relative performance of samples. XRD analysis showed that both (Bi,Pb)-2223 and Bi-2212 phases coexist in the samples having an orthorhombic crystal structure. Both the onset critical temperatures (T c) (onset) and zero electrical resistivity critical temperatures (T c) (R = 0) of the samples were determined from the DC electrical resistivity measurements. An improvement of the superconducting transition temperature of 3.0 % was obtained with increasing Y2O3 nanoparticles to x = 1.0 wt%, while the critical current density is improved by 200 %. AC magnetic susceptibility measurement showed that the diamagnetic fraction and intergranular coupling of the x = 1.0 wt% sample are greater than those of the others. The variation of magnetization with temperature (MT curve) of the samples was measured by cooling the sample in zero fields (ZFC) and an applied field of 10 Oe (FC). The results of AC magnetic susceptibility and DC magnetization measurements were in good agreement with DC electrical resistivity measurement.  相似文献   

9.
The bulk superconducting composites Cu0.5Tl0.5 Ba2?YSr Y Ca2Cu3O10?δ (Y = 0, 0.15, and 0.25) have been synthesized at an ambient pressure. The techniques used to characterize the samples were X-ray scans, Fourier transform infrared spectroscopy (FTIR), and dc resistivity (ρ) measurements. In CuTl-1223 system, we replaced Sr atom at Ba site and studied the superconducting properties of squeezed charge reservoir layer (CRL). From the XRD analysis, it is confirmed that the samples have orthorhombic structure and the dimensional parameters of the unit cell suppressed with the dopant atom which is most probably due to small in size of Sr atom as compared with Ba. The normal-state resistivity and critical temperatures, i.e., T c (R = 0) and \(T_{\mathrm {c}}^{\text {onset}}\) are observed to be suppressed. The lower values of critical temperature T c (R = 0) and activation energy U o (eV) might be possible due to a weak flux pinning. Accordingly, a reduction of weak links and enhanced insulating nature of inter-grain coupling were observed with the doping of Sr atom in CRL. Moreover, the doping in CRL of Sr atom is also confirmed with the FTIR technique. The intrinsic parameters, i.e., coherence length ξ c(0), crossover temperatures (T 3D?2D), inter-layer coupling (J), etc. were calculated by fluctuation-induced conductivity (FIC) analysis.  相似文献   

10.
The magnetoresistance, irreversibility fields, and critical current density were studied for a commercial 2G tape at the two relative orientations of magnetic field and superconductor plane. The critical temperatures of this tape of T c50 % = 91.5 K and T c0 = 90 K and the width of superconducting transition of ΔT = 1.5 K were obtained. The widths of the transition from the normal to the superconducting state do not increase at the applied magnetic field up to 90 kOe and do not depend on the orientation of the magnetic field with respect to the tape plane. The irreversibility field values were obtained and successfully fitted as a function of temperature using the formula: \(H_{\text {irr}} =H_{\text {irr0}} \left ({1-\frac {T}{T_{\text {c0}} }} \right )^{n}\). The irreversibility fields show an anisotropy, and at the liquid nitrogen temperature, they reach H irr = 430 kOe and H irr = 106 kOe for the parallel and perpendicular directions, respectively. The anisotropy ratio amounts to γ = 4 at 77 K and is small in comparison with other high-temperature superconducting materials. The critical current density of this tape was found to be of the order of 106 A cm?2 at 77 K in the self-magnetic field.  相似文献   

11.
Experimental p, ρ, T, x-data are given for water-ethanol mixtures at temperatures up to 673.15 K, including the saturation curve and the critical and supercritical regions, and at pressures up to 50 MPa for ethanol concentrations of 0.2, 0.5, and 0.8 mole fraction. The data of p, ρ, T, x-measurements are used to determine the critical parameters of mixtures. The thermal decomposition of ethanol molecules is observed at a temperature above 623.15 K.  相似文献   

12.
This study reports the effect of coronene (C24H12) addition on some superconducting properties such as critical temperature (Tc), critical current density (Jc), flux pinning force density (Fp), irreversibility field (Hirr), upper critical magnetic field (Hc2), and activation energy (U0), of bulk MgB2 superconductor by means of magnetisation and magnetoresistivity measurements. Disk-shaped polycrystalline MgB2 samples with varying C24H12 contents of 0, 2, 4, 6, 8, 10 wt%, were produced at 850 °C in Ar atmosphere. The obtained results show an increase in field-Jc values at 10 and 20 K resulting from the strengthened flux pinning, and a decrease in critical temperature (Tc) because of C substitution into MgB2 lattice, with increasing amount of C24H12 powder. The Hc2(0) and Hirr(0) values are respectively found as 144, 181, 172 kOe, and 128, 161, 145 kOe for pure, 4 wt% and 10 wt% C24H12 added samples. The U0 depending on the magnetic field curves were plotted using thermally activated flux flow model. The maximum U0 values are respectively obtained as 0.20, 0.23 and 0.12 eV at 30 kOe for pure, 4 wt% and 10 wt% C24H12 added samples. As a result, the superconducting properties of bulk MgB2 at high fields was improved using C24H12, active carbon source addition, because of the presence of uniformly dispersed C particles with nanometer order of magnitude, and acting as effective pinning centres in MgB2 structure.  相似文献   

13.
We studied nearly optimally Ni-substituted BaFe2?x Ni x As2 (BFNA) single crystals with T C ≈ 18.5 K. In irreversible magnetization measurements, we determined the field dependence of the critical current density and discuss the nature of observed strong bulk pinning. Using intrinsic multiple Andreev reflections effect (IMARE) spectroscopy, we directly determine two distinct superconducting gaps and resolve their moderate anisotropy in the momentum space. The BCS-ratio for the large gap 2Δ L /k B T C > 4.1 evidences for a strong coupling in the Δ L -bands.  相似文献   

14.
We investigate the influence of Ca ions on the structural and superconducting properties of (Nd1?yCay)Ba2(Cu0.94Ga0.06)3O z system by Rietveld refinement of the neutron diffraction patterns of three samples with y = 0.0 (A1), y = 0.18 (A2), and y = 0.36 (A3) along with X-ray diffraction, resistivity, and ac susceptibility measurements. Samples A2 and A3 are superconducting with T c values of 37 K and 76 K, respectively, whereas sample A1 is semiconducting to 20 K. Neutron diffraction data confirms (a) the occurrence of a single-phase tetragonal structure (space group Pmmm) for all three samples; (b) Ca ions substitute at the Nd site; and (c) increasing y from 0.0 to 0.36 decreases Cu(1)-O(1), Cu(2)-O(2), and Nd-Cu(2) bond lengths, whereas Cu(2)-O(4) bond length increases with corresponding increase in T c to 76 K due to increasing occupancy of Ca ions at Nd site. A correlation exists between the Cu(1)-O(1), Cu(2)-O(2), Cu(2)-O(4), and Nd-Cu(2) bond lengths and the measured T c values of three samples.  相似文献   

15.
Extraordinary magnetic behaviors, resistivity properties, and lattice parameters of the main sample BaFe2As2 and BaFe2?x Pt x As2 in the variation of x from 0 to 0.4 with the step of 0.1 were investigated. The bulk materials have been prepared by the solid-state reaction method and sealed into a quartz tube. The crystal structure of all samples exhibited the ThCr2Si2-type crystal structure which is in harmony with earlier studies in the literature. The superconducting states with magnetization measurements have been detailed in the wide temperature range 5–170 K, up to a field of 20 Oe. Increasing Pt and decreasing Fe elements in the BaFe2?x Pt x As2 compound deteriorated superconductivity. Using magnetization measurement data, we present the variation of superconducting critical temperature (T c) correlating with a Pt dopant rate from x = 0 to x = 0.4. The dopant rate of x = 0.3 exhibited the limit rate for maximum T c; deterioration of superconductivity was revealed with a dopant rate of more than x = 0.3. This should be explained by varying T c related to a lattice shrinking and pressure effect (geometric factor).  相似文献   

16.
In this study, the structural and superconducting properties of aniline-added MgB2 superconductors were investigated by X-ray diffraction (XRD), thermal analysis techniques, and ac susceptibility measurements. The amount of aniline was changed from 0 to 1 mol%. Phase analysis and lattice parameters were determined from XRD measurements. X-ray diffraction analysis indicates that the main phase is MgB2 and that there is a small amount of Mg as the secondary phase in aniline-added samples. According to the determination of lattice parameters, it is seen that the addition of aniline does not give a proper distribution with the contribution amount of a and c lattice parameters. From DSC curves, two exothermic peaks and one endothermic peak were observed in all samples. Pure and aniline-added samples were found to be dependent on the magnetic field in the ac susceptibility measurements, and the superconducting transition temperature (T c ) was found to decrease to lower temperatures due to an increase in the amount of aniline. It has been determined that changes in the in-phase (χ ) and out-of-phase (χ ) components of the ac susceptibility by increasing the aniline amount have weakened the MgB2 phase structure and thus cause changes in the pinning mechanism. In addition, ac losses of all the samples were calculated under external fields ranging from 160 to 1280 A/m and at 25 K.  相似文献   

17.
Z r S e 2 is a band semiconductor studied long time ago. It has interesting electronic properties, and because its layer structure can be intercalated with different atoms to change some of the physical properties. In this investigation, we found that Zr deficiencies alter the semiconducting behavior and the compound can be turned into a superconductor. In this paper, we report our studies related to this discovery. The decreasing of the number of Zr atoms in small proportion according to the formula Zr x Se2, where x is varied from about 8.1 to 8.6 K, changing the semiconducting behavior to a superconductor with transition temperatures ranging between 7.8 and 8.5 K, is depending on the deficiencies. Outside of those ranges, the compound behaves as semiconducting with the properties already known. In our experiments, we found that this new superconductor has only a very small fraction of superconducting material determined by magnetic measurements with applied magnetic field of 10 Oe. Our conclusions is that superconductivity is filamentary. However, in one studied sample, the fraction was about 10.2 %, whereas in others is only about 1% or less. We determined the superconducting characteristics; the critical fieldsthat indicate a type 2 superonductor with Ginzburg-Landau κ parameter of the order about 2.7. The synthesis procedure is quite normal following the conventional solid state reaction. In this paper, included are the electronic characteristics, transition temperature, and evolution with temperature of the critical fields.  相似文献   

18.
Results of an experimental study of the noise temperature (T n ) and noise bandwidth (NBW) of the superconductor NbN hot-electron bolometer (HEB) mixer as a function of its temperature (T b ) are presented. It was determined that the NBW of the mixer is significantly wider at temperatures close to the critical ones (T c ) than are values measured at 4.2 K. The NBW of the mixer measured at the heterodyne frequency of 2.5 THz at temperature T b close to T c was ~13 GHz, as compared with 6 GHz at Tb = 4.2 K. This experiment clearly demonstrates the limitation of the thermal flow from the NbN bridge at T b ? T c for mixers manufactured by the in situ technique. This limitation is close in its nature to the Andreev reflection on the superconductor/ metal boundary. In this case, the noise temperature of the studied mixer increased from 1100 to 3800 K.  相似文献   

19.
A method for evaluation of the critical temperature T c and the width of the superconducting transition ΔT c in HTSC single crystals has been developed. By this method, the first derivative of the temperature dependence of the resistivity, \(\frac{\partial \rho (T)}{\partial T}\), is constructed. A technique for synthesis of YBa2Cu3O7?x single crystals with highly reproducible physical-mechanical properties has been described. A standard sample with T c=94 K and ΔT c=0.25 K has been synthesized and certified.  相似文献   

20.
A high-temperature technique was developed for vapor pressure determination of solid and liquid γ-La2S3 (we called it the boiling point technique). Melting temperatures and total vapor pressures were measured for incongruently vaporizing γ-La2S3 at 1853–2210 K and 0.3–3.0 atm pressures. Having compared the slopes of the log p(S2) versus 1/T plots measured by various techniques, we recommend the equation log p(S2) [atm] = (6.31 ± 0.15) ? (12720±310)T ?1 for T = 1021–2013 K as the most reliable for practical use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号