首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The results are presented on the investigation of the structure and mechanical properties of hot-pressed materials based on AlB12C2 powders of sizes 50–150 nm. It is shown that the consolidated materials having mechanical properties comparable with boron carbide may be produced at essentially lower (by 270–300°C) sintering temperatures. It has been established that the heating rate at compressing affects the stoichiometry of the impurity phase containing Al, B, O, which define the difference in mechanical properties of the materials (a decrease of the heating rate results in the insignifical decrease of the material hardness and increase of the fracture toughness).  相似文献   

2.
Through the measurement of resistivity, magnetic susceptibility, and Hall effect, we discovered a novel BiSe2-based superconductor Ca0.5La0.5FBiSe2 with T c of 3.9 K. A strong diamagnetic signal below T c in susceptibility χ(T) is observed indicating the bulk superconductivity. The negative Hall coefficient throughout the whole temperature regime implies the dominant electron-type carriers in the sample. Different to most of BiS2-based compounds where superconductivity develops from a semiconducting-like normal state, its resistivity in the present compound exhibits a metallic behavior down to T c . Together with the enhanced T c , the metallic character of the normal state implies that the electronic structure of Ca0.5La0.5FBiSe2 may be different to those in the other BiS2-based compounds.  相似文献   

3.
Based on a two-band isotropic Ginzburg-Landau theory, we study the magnetic properties of the recently observed superconducting crystal TlNi2Se2. Our exact solution of upper critical field reproduces the experimental data in a broad temperature range. It directly underlies the multi-gap superconductivity in this crystal. We also show that the effective mass of the electron for one band is about 20m e while that of the other band is only 0.6m e. This semi-heavy-fermion feature can qualitatively explain the experimental value of the Kadowaki-Woods ratio in TlNi2Se2.  相似文献   

4.
The emergence of pressure induced superconductivity (SC) under the background of ferromagnetic state in 5f-electron based itinerant ferromagnetic superconductor UGe2 is studied in the single band model by using a mean-field approximation. The solutions to the coupled equations of superconducting gap (Δ) and magnetization (m) are obtained using Green’s function technique and equation of motion method. It is shown that there generally exists a coexistent (Δ≠0, m≠0) solution to the coupled equations of the order parameters in the temperature range 0<T<min (T C,T FM), where T C and T FM are respectively the superconducting and ferromagnetic transition temperatures. The study of electronic specific heat (C/T), density of states, free energy, etc. are also presented. The specific heat capacity at low temperature shows linear temperature dependence as opposed to the activated behavior. Density of states increases as opposed to the case of a standard ferromagnetic metal. Free energy study reveals that the superconducting ferromagnetic state has lower energy than the normal ferromagnetic state and, therefore, realized at low enough temperature. The agreement between theory and experimental results for UGe2 is quite satisfactory.   相似文献   

5.
We report superconductivity in as-synthesized Nb2PdSe5, which is similar to a recently discovered Nb2PdS5 compound having very high upper critical field, clearly above the Pauli paramagnetic limit Zhang et al. (Sci. Rep. 3:1446, 2013). A bulk polycrystalline Nb2PdSe5 sample is synthesized by a solid-state reaction route in a phase-pure structure. The structural characterization has been done by X-ray diffraction, followed by Rietveld refinements, which revealed that the Nb2PdSe5 sample is crystallized in a monoclinic structure within the space group C2/m. Structural analysis revealed the formation of sharing of one-dimensional PdSe2 chains. Electrical and magnetic measurements confirmed the superconductivity in Nb2PdSe5 compound at 5.5 K. Detailed magneto-resistance results exhibited the value of upper critical field to be around 8.2 T. The estimated H c2(0) is within the Pauli paramagnetic limit, which is unlike the Nb2PdS5.  相似文献   

6.
Magnetic properties of sintered Eu0.7Sm0.3Ba2Cu3O7?δ were investigated both in dc and ac magnetic fields. The dc response reflects the interplay between the rare earth ion paramagnetic and the superconducting charge carrier subsystems, respectively. The harmonic susceptibilities exhibit special features: the second harmonic is anomalously high and the third harmonic in zero dc-field has reversed temperature dependence with respect to the theoretical models. The magnetic relaxation at low fields is monotonous and occurs as a two-stage relaxation, each stage obeying logarithmical time dependence with different rates. At high fields, the relaxation is nonmonotonous with a peak at intermediate time suggesting a temporary re-entrance of irreversibility when the flux-line density increases in the center of the sample because of the redistribution of the vortices toward that region.  相似文献   

7.
Layered α-form ZrNX (X: Cl and Br) compounds with high quality were prepared by chemical vapor transport. The intercalation of alkali metal A (A: Li, Na, K, Rb) was carried out to realize electron doping into the orthogonal [Zr2N2] layers. The Rietveld refinement analysis reveals that the [Zr2N2] crystalline layers in the intercalation compounds shift mutually in the ab plane when compared with the hosts. Magnetic measurements show that the intercalation compounds A x ZrNX are changed into superconductors with transition temperature T c of up to 12 K. Upon the cointercalation of solvent molecules such as THF, T c decreases to as low as 6.1 K with increasing the interlayer spacing d up to 14 Å, which is similar to the d dependence of T c recently found in electron-doped α-form TiNX series. We also succeeded in synthesizing another new polymorph of α-Zr2N2S by the topochemical reaction between α-form ZrNX and Na2S. α-Zr2N2S (space group: Immm, a = 4.1375(1) Å, b = 3.5422(1) Å, and c = 11.5204(3) Å) has the same α-[Zr2N2] layers, whereas the interlayer spacing between two adjacent [Zr2N2] layers is effectively decreased by 1/3 when compared with the parent compounds of ZrNX.  相似文献   

8.
Composite materials fabricated by annealing of nonsuperconducting ceramics La2CuO4 and La1.56Sr0.44CuO4 at 910 °C during various time are investigated. Areas of superconducting La1.85Sr0.15CuO4 phase arises at boundaries of contacting nonsuperconducting granules. The volume fraction of the superconducting phase increases with increasing annealing time. A model describing the magnetic and transport properties of the samples at low magnetic fields is constructed. The magnetotransport characteristics of obtained samples at low magnetic fields (~ 100 Oe) are defined by weak links network formed by superconducting areas. At high fields, behavior of the system is defined by a magnetization of the disconnected superconducting islands. The average size of the superconducting areas has been estimated from an extended critical state model.  相似文献   

9.
The electronic properties, lattice vibration, and electron-phonon interaction properties of KBi2 are studied systematically by first-principles calculations. The agreement of calculated Debye temperature, electron-phonon coupling constant, and transition temperature with latest experiments validates the reliability of our work. Our results provide evidence that the superconducting transition of KBi2 originates from isotropical coupling of all phonon modes according to isotropical Migdal-Eliashberg theory.  相似文献   

10.
Samples with nominal compositions RuSr2R1.4Ce0.6Cu2O10–δ (R = Eu, Sm) were synthesized and their superconducting (SC) and magnetic properties were compared. A coexistence of AFM and FM ordering below the FM transition temperature was established in the two samples. It was shown that their SC properties are affected by a spontaneous vortex phase (SVP). The first critical fields of the two samples were calculate — Hcl≈ 70 Oe for R=Eu and 60 Oe for R=Sm. It was shown that the improved superconducting properties of the Sm-containing sample do not affect its FM behavior. A sizable magnetoresistance was observed in the two samples at T<T c.  相似文献   

11.
We report bulk superconductivity at 2.5 K in LaO0.5F0.5BiSe2 compound through the DC magnetic susceptibility and electrical resistivity measurements. The synthesized LaO0.5F0.5BiSe2 compound is crystallized in tetragonal structure with space group P4/nmm and Reitveld refined lattice parameters are a = 4.15(1) Å and c = 14.02(2) Å. The lower critical field of H c1 = 40 Oe, at temperature 2 K is estimated through the low field magnetization measurements. The LaO0.5F0.5BiSe2 compound showed metallic normal state electrical resistivity with residual resistivity value of 1.35 m Ω cm. The compound is a type-II superconductor, and the estimated H c2(0) value obtained by WHH formula is above 20 kOe for 90 % ρ n criteria. The superconducting transition temperature decreases with applied pressure till around 1.68 GPa and with further higher pressures a high- T c phase emerges with possible onset T c of above 5 K for 2.5 GPa.  相似文献   

12.
The ternary compound Sc2Fe3Si5 has attracted much attention because of the various anomalous physical properties. The specific heat experiment and energy band structure calculation suggest that Sc2Fe3Si5 is a two-gap superconductor. Based on this, we analyze the upper critical field for superconducting Sc2Fe3Si5 crystals using the two-band Ginzburg-Landau theory. A two-parameter variational approach is adopted to obtain the upper critical field in arbitrary direction. The temperature and angular dependences of the upper critical field are plotted. The results reproduce the experimental data in a very broad temperature range and strongly support previous specific heat data and theoretical calculation, pointing to the existence of two energy gaps in Sc2Fe3Si5. The anisotropy of the upper critical field is also studied and is about 2, in accordance with the experimental result. Moreover our calculations indicate that Sc2Fe3Si5 has rather a three-dimension character, in agreement with the energy band calculation.  相似文献   

13.
The possible difference in the properties upon doping the Sr2CaCu2O6 superconducting or blocking layers with Fe and Eu respectively was investigated in this work. The homogeneous Sr2?yEuyCaCu2O6+δ and Sr2CaCu2?xFexO6+δ (y = 0, 0.1, 0.5, x = 0, 0.05) compounds were produced by a high-pressure synthesis route. Judging by the magnetic susceptibility measurements, all samples exhibit a superconductivity transition and the Eu/Fe concentration dependencies on the diamagnetic moment and average Tc have been constructed using the experimental data. As a result, an unusual behavior of the Tc value was observed for the samples with doped Eu: a fivefold reduction in the europium concentration in the sample does not give a noticeable effect on the transition temperature value while the diamagnetic signal becomes more stronger. Complex superconducting dome was found for Eu-doped material: 0.1 ≤ y ≤ 0.5 region Tc vs. concentration data were approximated by inverted parabola-like curve with a maximum at y = 0.3. Difference in properties of the Eu and Fe-doped samples was also found in the behavior of the hysteresis loops showed the opposite orientations.  相似文献   

14.
We developed a process for preparing SiO2/TiO2 fibers by means of precursor transformation method. After mixing PCS and titanium alkoxide, continuous SiO2/TiO2 fibers were fabricated by the thermal decomposition of titanium-modified PCS (PTC) precursor. The tensile strength and diameter of SiO2/TiO2 fibers are 2.0 GPa, 13 μm, respectively. Based on X-ray diffraction (XRD), scanning electron microscopy (SEM), and high resolution transmission electron microscopy (HRTEM) measurements, the microstructure of the SiO2/TiO2 fibers is described as anatase–TiO2 nanocrystallites with the mean size of ~10 nm embedded in an amorphous silica continuous phase.  相似文献   

15.
Superlattice diffraction peaks have been recently observed in underdoped YBa2Cu3O6.6. They have been interpreted to originate from a charge density wave (CDW) formation. It is believed that strong phonon anomalies previously observed near the same wavevectors are related to the CDW. Competition with superconductivity is a salient feature of the CDW peaks. We investigated if the same is true of anomalous bond-stretching phonons around 60 meV by measuring the spectrum of this phonon at 10 K with and without an applied magnetic field of 10 T. Applying the field had no effect on the phonon within the experimental uncertainty.  相似文献   

16.
In the present study, we report an intercomparison of various physical and electronic properties of MgB2 and AlB2. In particular, the results of phase formation, resistivity ρ(T), thermoelectric power S(T), magnetization M(T), heat capacity (C P ), and electronic band structure are reported. The original stretched hexagonal lattice with a=3.083 Å, and c=3.524 Å of MgB2 shrinks in c-direction for AlB2 with a=3.006 Å, and c=3.254 Å. The resistivity ρ(T), thermoelectric power S(T) and magnetization M(T) measurements exhibited superconductivity at 39 K for MgB2. Superconductivity is not observed for AlB2. Interestingly, the sign of S(T) is +ve for MgB2 the same is ?ve for AlB2. This is consistent with our band structure plots. We fitted the experimental specific heat of MgB2 to Debye–Einstein model and estimated the value of Debye temperature (Θ D) and Sommerfeld constant (γ) for electronic specific heat. Further, from γ, the electronic density of states (DOS) at Fermi level N(E F) is calculated. From the ratio of experimental N(E F) and the one being calculated from DFT, we obtained value of λ to be 1.84, thus placing MgB2 in the strong coupling BCS category. The electronic specific heat of MgB2 is also fitted below T c using α-model and found that it is a two gap superconductor. The calculated values of two gaps are in good agreement with earlier reports. Our results clearly demonstrate that the superconductivity of MgB2 is due to very large phonon contribution from its stretched lattice. The same two effects are obviously missing in AlB2, and hence it is not superconducting. DFT calculations demonstrated that for MgB2, the majority of states come from σ and π 2p states of boron on the other hand σ band at Fermi level for AlB2 is absent. This leads to a weak electron phonon coupling and also to hole deficiency as π bands are known to be of electron type, and hence obviously the AlB2 is not superconducting. The DFT calculations are consistent with the measured physical properties of the studied borides, i.e., MgB2 and AlB2.  相似文献   

17.
The complex [UO2(OH)(CO(NH2)2)3]2(ClO4)2 (I) was synthesized. A single crystal X-ray diffraction study showed that compound I crystallizes in the triclinic system with the unit cell parameters a = 7.1410(2), b = 10.1097(2), c = 11.0240(4) Å, α = 104.648(1)°, β = 103.088(1)°, γ = 108.549(1)°, space group \(P\bar 1\), Z = 1, R = 0.0193. The uranium-containing structural units of the crystals are binuclear groups [UO2(OH)· (CO(NH2)2)3] 2 2+ belonging to crystal-chemical group AM2M 3 1 [A = UO 2 2+ , M2 = OH?, M1 = CO(NH2)2] of uranyl complexes. The crystal-chemical analysis of nonvalent interactions using the method of molecular Voronoi-Dirichlet polyhedra was performed, and the IR spectra of crystals of I were analyzed.  相似文献   

18.
The half-metallic ferromagnet CoLa2O4 was predicted based on density function theory. Its magnetic and electric properties were studied systematically. Results show that CoLa2O4 has half-metallicity and its molecular magnetic moment is 3.00 μB, which is lower than 4.0 μB of Fe3O4. CoLa2O4 is more sensitive than Fe3O4 in the same applied field. La-ions have little spin polarization. The electronic structures of a Co-ion and a La-ion are a1g 1↑a1g 1↓t1u 3↑t1u 3↓eg 2↑eg 2↓t2g 3↑ and a1g 1↑a1g 1↓t1u 3↑t1u 3↓ t2g 3↑t2g 3↓eg 2↑eg 2↓eg 2*↑eg 2*↓, respectively.  相似文献   

19.
We have studied general trends of crystallization from high-temperature solutions in the K2O-P2O5-V2O5-Bi2O3 system at P/V = 0.5?2.0, K/(P + V) = 0.7?1.4, and Bi2O3 contents from 25 to 50 wt % and identified the stability regions of BiPO4, K3Bi5(PO4)6, K2Bi3O(PO4)3, and K3Bi2(PO4)3 ? x (VO4) x (x = 0?3) solid solutions. The synthesized compounds have been characterized by X-ray powder diffraction and IR spectroscopy, and the structure of two solid solutions has been determined by single-crystal X-ray diffraction (sp. gr. C 2/c): K3Bi2(PO4)2(VO4), a = 13.8857(8), b = 13.5432(5), c = 6.8679(4) Å, β = 114.031(7)°; K3Bi2(PO4)1.25(VO4)1.75, a = 13.907(4), b = 13.615(2), c = 6.956(2) Å, β = 113.52(4)°.  相似文献   

20.
Platelike Li1 ? x Na x Cu2O2 single crystals up to 2 × 10 × 10 mm in dimensions have been grown by slowly cooling (1 ? x)Li2CO3·xNa2O2·4CuO melts in alundum crucibles in air. Li1 ? x Na x Cu2O2 solid solutions in the LiCu2O2-NaCu2O2 system have been shown to exist in the composition range 0.78 < x < 1. The temperature stability ranges of NaCu2O2 and LiCu2O2 are 780–930 and 890–1050°C, respectively. The Mössbauer spectra and electrical conductivity of the crystals have been measured.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号